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Computational Astrochemistry

Whatever concerns modeling, chemical k inet ics, 
microphysics

The use of computational tools to understand what we 
observe

Development of codes for “a priori” studies of astronomical 
regions 

Sub-area of Computational Astrophysics



Why do we need models?
• Observations:  

• Powerful 

• Colorful 

• Provide a lot of information 

• But only provide a single snapshot in time  

• Missing three-dimensional information 

• Modeling: 

• Gives us info on the evolution of the object (prior and after the observed stage)

ALMA-MAPS survey
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Different models
• Simple (qualitative but very informative):  

• 0d with fixed physical parameters (often tuned on observations) 

• Time evolution & Sensitivity studies (pseudo time-dependent) 

• Goal: understanding what are the most important processes 

• Interpret observational features (take the comparison with a pinch of salt)  

• Complex (a priori, needed to understand the physics): 

• Three-dimensional 

• Dynamical information (magnetic fields, turbulence, density fluctuations) 

• Computationally expensive (particularly if chemistry is included)
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ISM particles  
Time = t0

ISM particles  
Time = t0 + delta t

Update a gas volume element every time-step
> 106 particles (gas), > 104 time-steps

Chemistry is the most intensive part together with the solution of  
the Poisson equation (gravity solver)

Hydro-chemistry complexity



Hydro + Chemistry

GIZMO
Hopkins+2014

Reissl+2017
Grassi, SB+2014

Hydrodynamics + Chemistry
• GOAL: compare our simulations with observational data 

• Great advantage: follow chemistry and microphysics on the fly with hydro

Radiative 
Transfer

Synthetic  
Observations



HYDRODYNAMICS - CHEMISTRY COUPLING
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ABUNDANCES

▸ Absolute quantities (cm-3) 

▸ Relative quantities (abundances or mass fractions) 

▸ Chemical models compute local densities (n) 

▸ Observations provide line-of-sights quantities (column 
densities cm-2)
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ELEMENTAL ABUNDANCES

▸ Total amount of element X is its elemental abundance  

▸ Abundances are usually measured wrt H nuclei 
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xX =
n(X)
nH

▸ In dense clouds sometimes people use :

xX =
n(X)
n(H2)

nH = n(H) + 2n(H2) + n(H+) + 2n(H+
2 ) + . . .



The problem: mathematically

If in equilibrium
dni

dt
= 0

Two types of interstellar regions:  

tdyn > tchem (steady-state, solved via bisection methods)  

tdyn < tchem (time-dependent, need a proper solver)
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BRIEFLY ON STIFFNESS (CONT’D)
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Root-finding needed
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RATE COEFFICIENTS ARE KEY PARAMETERS (BUT CAUTION)
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NETWORKS ARE COMPLEX
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Chemical network

Backward reactions not included, problem with the equilibrium solution
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Chemistry is controlled by: 

Temperature (kinetic rate coefficient, desorption…) 

Density (frequency of collisions, ionization, freeze-out) 

Ionization: UV, cosmic rays 

External UV flux (ISRF) 

Cosmic ray ionization rate 



CO NETWORK EXAMPLE
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EXAMPLE
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WHAT WE HAVE TO DO NOW?
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DATABASES: KIDA

▸ Up-to-date database 

▸ Involve people with different expertise 

▸ Include gas-grain reactions 

▸ Include pre-built networks (for molecular clouds, planetary atmosphere…) 

▸ Useful as a starting point 

▸ Suggestion: always re-check in literature if there are new or better rates
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http://kida.obs.u-bordeaux1.fr
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DATABASES: KIDA
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DATABASES: KIDA



SUGGESTION ABOUT QUALITY OF THE RATES
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TYPICAL PROBLEMS

▸ Range of temperatures 

▸ Branching ratios 

▸ Accuracy 

▸ Availability 

▸ Reliability
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TYPICAL PROBLEMS
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CN + NH3
HCN + NH2

H2NCN + H

KIDA

What if you have to use this  
reaction in a high-energy problem



CHARGE CONSERVATION DURING RUNTIME

▸ Electrons play a fundamental role in the chemistry 

▸ Imperative to make sure the electric charge is conserved 

▸ And check overall charge neutrality
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n(e−) = ∑
cations

n(i) − ∑
anions

n( j) ≥ 0
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D. Semenov’s 2017

BENCHMARKS: THE FUNDAMENTAL STEP



BENCHMARKS: THE FUNDAMENTAL STEP
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Astrochemical modeling 40

Chemical network: 

Set of reactive collisions + ionization + … 

Databases: KIDA, UMIST…

Numerical solver: 

Time-dependent: stiff 1st order ODE 

Steady-state: zero.finding algorithms (e.g. Newton-Raphson)

Boundary conditions: 

Elemental abundances, initial chemical conditions



Overview 41

The engine: 

The network: typically 100-500 species and thousands gas-phase reactions 

Small vs big networks 

With or without ice chemistry 

Secondary photons, grain charge 

Uncertain processes (chemical desorption…) 

A model: 

Boundary conditions 

Time dependent vs steady-state 

Physical framework (0d to 3d) 

Solve a system of coupled 1st order ODE 

Uncertain processes (chemical desorption…) 



Chemical networks: size vs properties 42

Rule of thumb: 

Include all the essential chemical processes to simulate accurately 
the chemistry of the desired molecule(s) 

In principle: 

More reactions more accurate the solution 

In practice: 

Risk of increasing the computational costs and introduce 
uncertainties 



Chemical networks: construction 43

Top-down (fast but complex): 

Download existing chemical networks and reduce to your needs 

Always re-check the network after removal of species/reactions 

Bottom-up (slow and risky, but more control): 

Build a chemical network from scratch starting with the most relevant processes 

Things to keep into account: 

CLOSURE: all species included in the network must have formation/destruction 
pathways 

Sink species might cause problems (but not necessarily) 
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EXAMPLES: LOW-DIMENSIONALITY MODELS 

T= 10 K, n=104 cm-3

Includes surface chemistry

Recent benchmark 

KROME vs Semenov 2010
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EXAMPLES: LOW-DIMENSIONALITY MODELS 

Gravitational collapse
Semi-analytical

From Grassi, SB+2014

With cooling/heating
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EXAMPLES: LOW-DIMENSIONALITY MODELS   

From Sipila+2010

Pseudo 1D
No thermodynamics
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EXAMPLES: LOW-DIMENSIONALITY MODELS  

Le Gal+2019
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EXAMPLES: LOW-DIMENSIONALITY MODELS  
Le Gal+2019
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D. Semenov’s 2017Penteado+2017

UNCERTAINTIES
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Penteado+2017
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▸ A lot of gas-phase reactions rate coefficients are 
estimates 

▸ Huge uncertainty on grain-surface chemistry (Binding 
energy, sticking coefficients, mobility, reactivity, 
modelling) 

▸ Uncertainties on key physical parameters (e.g. CRIR)

UNCERTAINTIES
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▸ Sensitivity analysis important to identify key uncertainties 
but not always trivial 

▸ Problem dependent: ideally one can identify the main 
reaction fluxes in a specific simulations/model 

▸ And change the rate regulating those reactions to see 
how this affects the evolution

UNCERTAINTIES



ObservationsCODES
• 0d codes for gas-grain: 

• KROME (open source): www.kromepackage.org 

• ALCHEMIC (MPIA, Heidelberg): http://www2.mpia-hd.mpg.de/homes/semenov/ 

• Nahoon (Bordeaux): http://kida.astrophy.u-bordeaux.fr/codes.html 

• ASTROCHEM (Grenoble): https://github.com/smaret/astrochem 

• MAGICKAL (UVa) (private) 

• CLOUDY (Ferland, no grain, eq.): https://www.nublado.org 

• MEUDON (PDR): https://ism.obspm.fr/?page_id=33 

• UCLCHEM: https://github.com/uclchem/UCLCHEM 

• THORUS-3DPDR (RT): http://www.astro.ex.ac.uk/people/th2/torus_html/homepage.html 

• GRAINOBLE (private)

http://www.kromepackage.org
http://www2.mpia-hd.mpg.de/homes/semenov/
http://kida.astrophy.u-bordeaux.fr/codes.html
https://github.com/smaret/astrochem
https://www.nublado.org
https://ism.obspm.fr/?page_id=33
https://github.com/uclchem/UCLCHEM
http://www.astro.ex.ac.uk/people/th2/torus_html/homepage.html


COMPUTATIONAL ASTROCHEMISTRY IS NOT ONLY NETWORKS
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▸ Chemical networks are embedded in codes which also 
solve microphysics



COMPUTATIONAL ASTROCHEMISTRY IS NOT ONLY NETWORKS
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