# LECTURE 7

STEFANO BOVINO UNIVERSIDAD DE CONCEPCIÓN



## Astrochemistry branches



Laboratory Astrochemistry

Quantum Chemistry

Computational Astrochemistry

Observational Astronomy

Spectra, Collisional Coefficients, Atomic/Molecular Data Chemical Modeling, Simulations, Interpretation of Observations

## Astrochemistry branches



Spectra, Collisional Coefficients, Atomic/Molecular Data Chemical Modeling, Simulations, Interpretation of Observations

## Computational Astrochemistry

Sub-area of Computational Astrophysics

Whatever concerns modeling, chemical kinetics, microphysics

The use of computational tools to understand what we observe

Development of codes for "a priori" studies of astronomical regions

## Why do we need models?

#### • Observations:

- Powerful
- Colorful
- Provide a lot of information
- But only provide a single snapshot in time
- Missing three-dimensional information





#### • Modeling:

• Gives us info on the evolution of the object (prior and after the observed stage)

Why chemistry is important (in numerical simulations)

- Needed to compute metal/molecular cooling  $\rightarrow$  SF
- Comparison with observations

### Why chemistry is troublesome (in numerical simulations)

- very CPU demanding
- has a non-linear behaviour
- chemical networks are complex
- connected with many physical processes

## Different models

- Simple (qualitative but very informative):
  - Od with fixed physical parameters (often tuned on observations)
  - Time evolution & Sensitivity studies (pseudo time-dependent)
  - Goal: understanding what are the most important processes
  - Interpret observational features (take the comparison with a pinch of salt)

- Complex (a priori, needed to understand the physics):
  - Three-dimensional
  - Dynamical information (magnetic fields, turbulence, density fluctuations)
  - Computationally expensive (particularly if chemistry is included)

## Hydro-chemistry complexity



Update a gas volume element every time-step

> 10<sup>6</sup> particles (gas), > 10<sup>4</sup> time-steps

Chemistry is the most intensive part together with the solution of the Poisson equation (gravity solver)

## Hydrodynamics + Chemistry

- GOAL: compare our simulations with observational data
- **Great advantage**: follow chemistry and microphysics on the fly with hydro



### **HYDRODYNAMICS - CHEMISTRY COUPLING**

Chemistry couples through the energy equation as a source term

$$\frac{\partial(\rho e)}{\partial t} + \nabla[(\rho e + P)v] = S_e \tag{3}$$



### ABUNDANCES

- Absolute quantities (cm<sup>-3</sup>)
- Relative quantities (abundances or mass fractions)
- Chemical models compute local densities (n)
- Observations provide line-of-sights quantities (column densities cm<sup>-2</sup>)

### **ELEMENTAL ABUNDANCES**

- Total amount of element X is its elemental abundance
- Abundances are usually measured wrt H nuclei

$$x_{\rm X} = \frac{n({\rm X})}{n_{\rm H}}$$

$$n_{\rm H} = n({\rm H}) + 2n({\rm H}_2) + n({\rm H}^+) + 2n({\rm H}_2^+) + \dots$$

In dense clouds sometimes people use :

$$x_{\rm X} = \frac{n({\rm X})}{n({\rm H}_2)}$$

## The problem: mathematically

Stiff: it contains widely varying time scales, i.e., some components of the solution decay much more rapidly than others.

13



 $t_{dyn} > t_{chem}$  (steady-state, solved via bisection methods)

t<sub>dyn</sub> < t<sub>chem</sub> (time-dependent, need a proper solver)

### **BRIEFLY ON STIFFNESS (CONT'D)**

### DIFFERENT DEFINITIONS EXIST: a problem is stiff if

- it contains widely varying time scales, i.e., some components of the solution decay much more rapidly than others.
- the stepsize is dictated by stability requirements rather than by accuracy requirements.
- if explicit methods dont work, or work only extremely slowly.
- More generally, a problem is stiff if the eigenvalues of the Jacobian of f differ greatly in magnitude

### Explicit vs Implicit methods

- Explicit: in order to evaluate y<sub>n+1</sub>, we use information from time step n
- Forward Euler's method reminder  $\rightarrow y_{n+1} = y_n + hf(t_n, y_n)$

it is a single-step method!  $\downarrow$  each new time step computation as an initial value problem

Let's introduce the *implicit* methods:

- Backward Euler's method:  $y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$
- it is an algebraic equation to be solved for  $y_{n+1}$  Root-finding needed

The core of the problem:

$$A+B \xrightarrow{k(T)} C+D$$

$$k(T) = \left(\frac{8k_bT}{\pi\mu}\right)^{1/2} \frac{1}{(k_BT)^2} \int_0^\infty \sum_{\nu'j'} \sigma_{j'\nu' \leftarrow j=0\nu=0}(E) e^{-E/k_BT} E dE$$

$$flux = k(T)n_A(t)n_B(t)$$

$$\downarrow$$
ODEs

A simple chemical network

$$\begin{array}{cccc} \mathrm{H}^{+} + \mathrm{e}^{-} & \stackrel{k_{1}}{\longrightarrow} & \mathrm{H} + \gamma & (15) \\ \mathrm{H} + \gamma & \stackrel{k_{2}}{\longrightarrow} & \mathrm{H}^{+} + \mathrm{e}^{-} & (16) \end{array}$$

ODE and Jacobian (an excerpt)

$$\frac{\mathrm{d}n_{\mathrm{H}}}{\mathrm{d}t} = k_{1}n_{\mathrm{H}^{+}}n_{\mathrm{e}^{-}} - k_{2}n_{\mathrm{H}} \qquad (17)$$
$$\frac{\partial^{2}n_{\mathrm{H}}}{\partial t \partial n_{\mathrm{H}}} = k_{2} \qquad \frac{\partial^{2}n_{\mathrm{H}}}{\partial t \partial n_{\mathrm{H}^{+}}} = k_{1}n_{\mathrm{e}} \qquad (18)$$

### RATE COEFFICIENTS ARE KEY PARAMETERS (BUT CAUTION)

How to determine k(T)?

- Experimental (lucky)
- Langevin (estimate)
  - valid for ion-molecule reactions
  - "exothermic", i.e. without barrier
  - temperature independent
- Physical considerations (e.g. H=D)
- ab initio calculations (not always available)
  - solving the Schrödinger equation (2nd order coupled PDEs)

### THIS IS A WORK FOR QUANTUM CHEMISTS!

### **NETWORKS ARE COMPLEX**

Astrochemical networks NODES  $\rightarrow$  chemical species EDGES  $\rightarrow$  conversion between chemicals



Backward reactions not included, problem with the equilibrium solution

#### <u>Chemistry is controlled by:</u>

Temperature (kinetic rate coefficient, desorption...)

Density (frequency of collisions, ionization, freeze-out)

Ionization: UV, cosmic rays

External UV flux (ISRF)

Cosmic ray ionization rate

### **CO NETWORK EXAMPLE**



- solve a system of coupled ODEs is computationally expensive (stiff)
- it requires accurate implicit solvers
- to build a chemical network is not an easy task
  - accuracy of rates
  - availability of rates
  - how to retrieve the rates
- reaction rates databases: UMIST, OSU, KIDA (~5000 reactions)
  - never trust
  - a lot of uncertainties

### EXAMPLE

### Problem 1 - nodes (species)

atoms (H, He, C, N, O, Si, Ne, S, P, F, Al, ...)? species (H, H2, CO, CH, ...)? cations and anions (H<sup>-</sup>, H<sup>+</sup>, C<sup>3+</sup>, CH<sup>-</sup> ...)? isomers (HOC<sup>+</sup>, HCO<sup>+</sup>, ...)? isotopes ( $^{12}C^{16}O$ ,  $^{13}C^{16}O$ , ...)? fancy stuff (dust, PAH, ...)?

### Problem 2 - edges (reactions)

```
bimolecular (OH<sup>+</sup> + e<sup>-</sup> \rightarrow O + H)?
photochemistry (H<sup>-</sup> + \gamma \rightarrow H + e<sup>-</sup>)
cosmic rays (CO + CR \rightarrow C + O)
cosmic rays secondary (CO + CRP \rightarrow C + O)
3-body (H + H + H<sub>2</sub> \rightarrow H<sub>2</sub> + H<sub>2</sub>)
```

Problem 1 - nodes (species) atoms (H, He, C, N, O, Si, Ne, S, P, F, AI, ...)? species (H, H2, CO, CH, ...)? cations and anions (H<sup>-</sup>, H<sup>+</sup>, C<sup>3+</sup>, CH<sup>-</sup> ...)? isomers (HOC<sup>+</sup>, HCO<sup>+</sup>, ...)? isotopes ( $^{12}C^{16}O$ ,  $^{13}C^{16}O$ , ...)? fancy stuff (dust, PAH, ...)?

Problem 2 - edges (reactions) bimolecular (OH<sup>+</sup> + e<sup>-</sup>  $\rightarrow$  O + H)? photochemistry (H<sup>-</sup> +  $\gamma \rightarrow$  H + e<sup>-</sup>) cosmic rays (CO + CR  $\rightarrow$  C + O) cosmic rays secondary (CO + CRP  $\rightarrow$  C + O) 3-body (H + H + H<sub>2</sub>  $\rightarrow$  H<sub>2</sub> + H<sub>2</sub>)



chemical reactions "commutes"  $\begin{array}{c} {\rm H^+ + e^- \rightarrow {\rm H} + \gamma} \\ {\rm e^- + {\rm H^+} \rightarrow {\rm H} + \gamma} \end{array}$ 

|                | Η | $H^+$ | $H^-$ | e <sup>-</sup> | $\gamma$ | CR |
|----------------|---|-------|-------|----------------|----------|----|
| Н              |   |       |       |                |          |    |
| $H^+$          | x | X     |       |                | X        | X  |
| $H^{-}$        | x | Х     | X     | X              |          |    |
| e <sup>-</sup> | x | Х     | Х     | X              | X        | X  |
| $\gamma$       | x | Х     | Х     | Х              | X        | X  |
| CR             | x | Х     | Х     | Х              | Х        | Х  |

some pairs are impossible (e.g.  $H^- + H^-$ )



some reactions lead to species  $\notin$  subset (e.g.  $H^- + H \rightarrow H_2 + e^-$ )



final set of reactions

### Final network

| $H + e^-$       | $\rightarrow$ | $H^{+} + 2e$       |
|-----------------|---------------|--------------------|
| $H + e^-$       | $\rightarrow$ | ${\sf H}^-+\gamma$ |
| $H + \gamma$    | $\rightarrow$ | $H^+ + e^-$        |
| H + CR          | $\rightarrow$ | $H^+ + e^-$        |
| $H^+ + e^-$     | $\rightarrow$ | $H+\gamma$         |
| $H^{+} + H^{-}$ | $\rightarrow$ | H + H              |
| $H^- + \gamma$  | $\rightarrow$ | $H + e^{-}$        |
| $H^- + H$       | $\rightarrow$ | $2H + e^{-}$       |
| $H^- + CR$      | $\rightarrow$ | $H + e^-$          |

collisional ionization radiative attachment photoionization CR ionization recombination mutual recombination electron photodetachment collisional detachment CR detachment

### WHAT WE HAVE TO DO NOW?

- hunt the rate coefficients you need
- build the system of rate equations
- look for an accurate solver to integrate the equations
- set your initial conditions
- solve the system and check the results (easiest part, but not always)

### **DATABASES: KIDA**

- Up-to-date database
- Involve people with different expertise
- Include gas-grain reactions
- Include pre-built networks (for molecular clouds, planetary atmosphere...)
- Useful as a starting point
- Suggestion: always re-check in literature if there are new or better rates

### http://kida.obs.u-bordeaux1.fr

### **DATABASES: KIDA**

#### WHAT ARE THE TYPES OF REACTIONS?

In KIDA, there are four big famillies of reactions:

- Unimolecular reactions include dissociations and ionizations by cosmic-ray particules, secondary UV photons induced by cosmic-ray particles and direct UV photons. ITYPES 1 to 3.
- Bimolecular reactions includes all chemical reactions between two species. ITYPES 4 to 8
- Termolecular reactions are 3-body asssisted reactions.
- Surface reactions are reactions occuring at the surface of interstellar grains between adsorbed species.

#### ITYPE Description

| 1 | Dissociation or ionization of species due to direct collision with cosmic-ray particles.                                                                                                                                                                            |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Dissociation or ionization of species due to UV photons emitted following H2 excitation.                                                                                                                                                                            |
| 3 | Dissociation or ionization of neutral species by UV photons with a standard interstellar UV field.                                                                                                                                                                  |
| 4 | Neutral-neutral (A + B $\rightarrow$ C + D), ion-neutral (A+ + B $\rightarrow$ C+ +D, A- + B $\rightarrow$ C- + D), anion-cation (A+ + B- $\rightarrow$ C + D) reactions and associative ionization (A + B $\rightarrow$ AB+ + e-)                                  |
| 5 | Exchange reaction A+ + B $\rightarrow$ A + B+ and A+ + B- $\rightarrow$ A + B                                                                                                                                                                                       |
| 6 | Association reactions between two species (neutral or ionized) stabilized by the emission of a photon (A + B $\rightarrow$ AB + photon or A+ + B $\rightarrow$ AB+ + photon).                                                                                       |
| 7 | Association of a neutral species and an anion, resulting in the ejection of the extra electron (A- + B $\rightarrow$ AB + e-).                                                                                                                                      |
| 8 | Recombination of a positive ion with an electron resulting in the dissociation of the molecule (AB+ + e- $\rightarrow$ A + B) or the emission of a photon (AB+ + e- $\rightarrow$ AB + photon) or the attachment of the electron (A + e- $\rightarrow$ A- + photon) |

### **DATABASES: KIDA**

#### WHICH FORMULA ARE USED TO COMPUTE THE RATE COEFFICIENTS (FOR GAS-PHASE REACTIONS) FROM THE PARAMETERS STORED IN THE DATABASE?

| Number (for export) | Name                        | Formula                                                                                         | Units                           |
|---------------------|-----------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|
| 1                   | Cosmic-ray ionization       | $k = \alpha \varsigma \ (\varsigma: H_2 \ cosmic-ray \ ionization \ rate)$                      | s <sup>-1</sup>                 |
| 2                   | Photo-dissociation (Draine) | $k = \alpha e^{-\gamma A_v} (A_v: visual extinction)$                                           | s <sup>-1</sup>                 |
| 3                   | Modified Arrhenius          | $k(T) = \alpha (T/300)^{\beta} e^{-\gamma/T}$                                                   | cm <sup>3</sup> s <sup>-1</sup> |
| 4                   | ionpol1                     | $k(T) = \alpha \beta \ (0.62 + 0.4767 \gamma (300/T)^{0.5})$                                    | cm <sup>3</sup> s <sup>-1</sup> |
| 5                   | ionpol2                     | $k(T) = \alpha \beta (1 + 0.0967 \gamma (300/T)^{0.5} + \frac{\gamma^2}{10.526} \frac{300}{T})$ | cm <sup>3</sup> s <sup>-1</sup> |
| 6                   | 3-body                      | See here                                                                                        |                                 |

### **SUGGESTION ABOUT QUALITY OF THE RATES**

#### WHAT ARE THE QUALITY INDICATORS OF THE RATE COEFFICIENTS?

Quality indicators are of four types:

Not recommended value

**O**Not rated value

✓ Valid value

Recommended value

« Not recommended » means that either we have found a mistake in the data or there is a more accurate value to use. We do not erease any value from KIDA, this is why we use this indicator. « Not rated » means that we do not know. « Valid » is used for data with a proper reference (usually papers published by physico-chemists). « Recommended » is used for reactions that have been studied by KIDA experts and a datasheet explaining the recommendation is also available.

| Туре | Reaction                                                    |                                                                  | a        | β        | Ŷ       | Т (К)    | Formula                     | Evaluation |
|------|-------------------------------------------------------------|------------------------------------------------------------------|----------|----------|---------|----------|-----------------------------|------------|
| Bimo | H + OH                                                      | $\rightarrow$ 0 + H <sub>2</sub>                                 | 6.86E-14 | 2.80E+0  | 1.95E+3 | 10-280   | Modified Arrhenius equation | θ          |
|      |                                                             | $\rightarrow$ 0 + H <sub>2</sub>                                 | 6.99E-14 | 2.80E+0  | 1.95E+3 | 50-200   | Modified Arrhenius equation | 0          |
| Bimo | H <sub>2</sub> + O                                          | → H + OH                                                         | 6.34E-12 | 0.00E+0  | 4.00E+3 | 298-3300 | Modified Arrhenius equation | <b>~</b>   |
|      |                                                             | → H + OH                                                         | 1.46E-12 | 0.00E+0  | 9.65E+3 | 298-3300 | Modified Arrhenius equation | ✓          |
| Bimo | H <sub>3</sub> <sup>+</sup> + O <sup>-</sup>                | $\rightarrow$ H + O + H <sub>2</sub>                             | 7.51E-8  | -5.00E-1 | 0.00E+0 | 10-280   | Modified Arrhenius equation | 0          |
| Bimo | C <sub>2</sub> H <sub>3</sub> <sup>+</sup> + O <sup>-</sup> | $\rightarrow$ 0 + H <sub>2</sub> + CCH                           | 7.51E-8  | -5.00E-1 | 0.00E+0 | 10-280   | Modified Arrhenius equation | 0          |
| Bimo | C <sub>5</sub> H <sub>5</sub> <sup>+</sup> + O <sup>-</sup> | $\rightarrow H + O + H_2 + C_5 H_2$                              | 7.51E-8  | -5.00E-1 | 0.00E+0 | 10-280   | Modified Arrhenius equation | 0          |
| Bimo | C <sub>7</sub> H <sub>5</sub> <sup>+</sup> + O <sup>-</sup> | $\rightarrow H + O + H_2 + C_7 H_2$                              | 7.51E-8  | -5.00E-1 | 0.00E+0 | 10-280   | Modified Arrhenius equation | 0          |
| Bimo | $C_8H_4^+ + O^-$                                            | $\rightarrow$ O + H <sub>2</sub> + C <sub>8</sub> H <sub>2</sub> | 7.51E-8  | -5.00E-1 | 0.00E+0 | 10-280   | Modified Arrhenius equation | 0          |
| Bimo | $C_9H_4^+ + O^-$                                            | $\rightarrow$ O + H <sub>2</sub> + C <sub>9</sub> H <sub>2</sub> | 7.51E-8  | -5.00E-1 | 0.00E+0 | 10-280   | Modified Arrhenius equation | 0          |
| Bimo | H <sub>2</sub> + O(1D)                                      | → H + OH                                                         | 1.09E-10 | 4.94E-2  | 0.00E+0 | 50-296   | Modified Arrhenius equation | <b>~</b>   |

### **TYPICAL PROBLEMS**

- Range of temperatures
- Branching ratios
- Accuracy
- Availability
- Reliability

### **TYPICAL PROBLEMS**

# $CN + NH_3 \longrightarrow H_2NCN + H_2$



### CHARGE CONSERVATION DURING RUNTIME

- Electrons play a fundamental role in the chemistry
- Imperative to make sure the electric charge is conserved
- And check overall charge neutrality



### **BENCHMARKS: THE FUNDAMENTAL STEP**

- Input parameters: units, proper values
- Initial abundances
- Feasibility of computed chemistry: how to check it?
- Many rates have large uncertainties
- Surface chemistry: stochasticity, desorption/binding energies, porosity, bulk ice vs reactive surface, diffusion between monolayers, etc

### **BENCHMARKS: THE FUNDAMENTAL STEP**



## Astrochemical modeling

#### **Chemical network:**

Set of reactive collisions + ionization + ...

Databases: KIDA, UMIST...

Numerical solver:

Time-dependent: stiff 1st order ODE

Steady-state: zero.finding algorithms (e.g. Newton-Raphson)

**Boundary conditions:** 

Elemental abundances, initial chemical conditions

## Overview

#### The engine:

The network: typically 100-500 species and thousands gas-phase reactions

Small vs big networks

With or without ice chemistry

Secondary photons, grain charge

Uncertain processes (chemical desorption...)

#### A model:

**Boundary conditions** 

Time dependent vs steady-state

Physical framework (0d to 3d)

Solve a system of coupled 1st order ODE

Uncertain processes (chemical desorption...)

### Rule of thumb:

Include all the essential chemical processes to simulate accurately the chemistry of the desired molecule(s)

### In principle:

More reactions more accurate the solution

In practice:

Risk of increasing the computational costs and introduce uncertainties

#### **Top-down (fast but complex):**

Download existing chemical networks and reduce to your needs

Always re-check the network after removal of species/reactions

#### **Bottom-up (slow and risky, but more control):**

Build a chemical network from scratch starting with the most relevant processes

#### Things to keep into account:

<u>CLOSURE</u>: all species included in the network must have formation/destruction pathways

Sink species might cause problems (but not necessarily)





Gravitational collapse Semi-analytical

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\rho}{t_{ff}}$$

With cooling/heating

From Grassi, SB+2014



From Sipila+2010

46





Le Gal+2019

Le Gal+2019





### UNCERTAINTIES





Penteado+2017

- A lot of gas-phase reactions rate coefficients are estimates
- Huge uncertainty on grain-surface chemistry (Binding energy, sticking coefficients, mobility, reactivity, modelling)
- Uncertainties on key physical parameters (e.g. CRIR)

- Sensitivity analysis important to identify key uncertainties but not always trivial
- Problem dependent: ideally one can identify the main reaction fluxes in a specific simulations/model
- And change the rate regulating those reactions to see how this affects the evolution

## CODES

- Od codes for gas-grain:
  - KROME (open source): <u>www.kromepackage.org</u>
  - ALCHEMIC (MPIA, Heidelberg): <u>http://www2.mpia-hd.mpg.de/homes/semenov/</u>
  - Nahoon (Bordeaux): <u>http://kida.astrophy.u-bordeaux.fr/codes.html</u>
  - ASTROCHEM (Grenoble): <u>https://github.com/smaret/astrochem</u>
  - MAGICKAL (UVa) (private)
  - CLOUDY (Ferland, no grain, eq.): <a href="https://www.nublado.org">https://www.nublado.org</a>
  - MEUDON (PDR): <u>https://ism.obspm.fr/?page\_id=33</u>
  - UCLCHEM: <a href="https://github.com/uclchem/UCLCHEM">https://github.com/uclchem/UCLCHEM</a>
  - THORUS-3DPDR (RT): <u>http://www.astro.ex.ac.uk/people/th2/torus\_html/homepage.html</u>
  - **GRAINOBLE** (private)

### **COMPUTATIONAL ASTROCHEMISTRY IS NOT ONLY NETWORKS**

Chemical networks are embedded in codes which also solve microphysics



### **COMPUTATIONAL ASTROCHEMISTRY IS NOT ONLY NETWORKS**

convert kinetic energy in something else!

- 1. radiative loss
- 2. endothermic reactions
- 3. gas flows
- 4. gas-dust interaction



