INTERSTELLAR MEDIUM

- Stefano Bovino -

Cooling

Table 1Phases of the ISM

Component	Temperature (K)	Density (cm^{-3})	Fractional ionization
Molecular gas	10 - 20	$> 10^{2}$	$< 10^{-6}$
Cold neutral medium (CNM)	50 - 100	20 - 50	$\sim 10^{-4}$
Warm neutral medium (WNM)	6000 - 10000	0.2 – 0.5	~ 0.1
Warm ionized medium (WIM)	~ 8000	0.2 – 0.5	1.0
Hot ionized medium (HIM)	$\sim 10^{6}$	$\sim 10^{-2}$	1.0

Adapted from Ferriére (2001), Caselli et al. (1998), Wolfire et al. (2003), and Jenkins (2013).

ISM phases

$$A_v = \frac{N_{\rm H}}{2 \times 10^{21}} \rm mag \, cm^{-2}$$

N_H (cm⁻²)

 Table 1
 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}_{H_{2}} > 0.1 f^{n}_{C^{+}} > 0.5$	$f^{n}_{C^{+}} < 0.5 f^{n}_{CO} < 0.9$	$f^{n}_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5-10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30–100	30–100	15–50?	10–50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

General concepts (1)

Heating

Main cooling terms

- The radiation observed from the ISM gas traces the primary cooling processes in the ISM
- We have two categories:
 - Radiative processes
 - Some of the inverse heating processes

Main cooling terms

• Collisional excitation: free electron impact knocks a bound electron

to an excited state: it decays, emitting a photon

- Collisional ionization: free electron impact ionizes a formerly bound electron, taking energy from the free electron
- Recombination: free electron recombines with an ion: the binding energy and the free electron's kinetic energy are radiated away

Main cooling terms

8

• Radiative processes:

collisional

de-excitation

energy

 Radiation by atoms/molecules/ions excited by collisions transfer part of

the kinetic energy into radiation

collisional

excitation

radiative

de-excitation

Radiative cooling

- Involves electronic, rotational and vibrational transitions
- It is the process through we observe atoms and molecules

Total cooling function

Total cooling

$$\Lambda_{\rm 2levels} = n_1 \Delta E_{10} A_{10} \ {\rm erg} \ {\rm cm}^{-3} \ {\rm s}^{-1}$$

Multilevels cooling

collider

kinetic

general expression (N levels)

hν

target

Main coolants

• Fine structure line cooling is almost everywhere in the ISM the

dominant physical process

- Efficient cooling by fine structure lines needs
 - High element abundance
 - A fine structure level close to the fundamental level

Main coolants

- In neutral regions CII and OI dominate
 - In the low temperature only upper fine structure of CII (91.2 K), line intensity @ 158 micron.
 - OI first fine-structure level is @ 228 K, WNM
- In ionized regions OII, OIII, NII, NIII, NeII and NeIII
 - Excitation by electron collisions with ions / Lyman alpha (H)

Main coolants

- T > 104 K
 - Lyman series of hydrogen atoms excited by electrons
 - Allowed transitions
 - Electrons abundance decays with temperature
- T < 10⁴ K
 - Other lines, forbidden lines
 - Critical densities ~ 10²-10⁶ cm⁻³
 - Important in WNM and CNM

Main coolants: molecular gas

- The most important: rotational emission lines of CO
- Also the emission line of the CI fine-structure line 23.4 K

Requirements for cooling

- High frequency of collisions
- Amount of exchanged energy less than the thermal (kinetic) energy of the gas
- High probability of energy exchange
- Excitation energy transported via photons
- Photons emitted by the excited atom/ion before the next particle

collision happens + photons leave the gas without any absorption

Cooling functions

Cooling functions

Cooling functions

20 >

• In the ISM dust and

gas are not in

thermodynamical

equilibrium

Quite often different

temperatures

$\Gamma_{em} = \Lambda_{g \to d} + \Gamma_{CMB} + \Gamma_{abs}$

- the grain size $(\Gamma \propto \pi a^2)$
- dust and gas temperature

• gas velocity
$$v_g = \sqrt{\frac{8k_b T_g}{\pi m_H}}$$

$$\Gamma_{em} = \Lambda_{g \to d} + \Gamma_{CMB} + \Gamma_{abs}$$

$$\begin{split} \Lambda_{g \to d}(a, T_d) &= 2\pi a^2 n_g n_d v_g k_b (T_g - T_d) \alpha \\ \Gamma_{g \to d}(a, T_d) &= 2\pi a^2 n_g n_d v_g k_b (T_d - T_g) \alpha \end{split} \begin{array}{l} T_g > T_d \to \text{cooling} \\ T_d > T_g \to \text{heating} \end{split}$$

Chemical cooling

 $A + B \leftrightarrow C + D + \Delta E$

Chemical cooling

needs energy from the medium, $\Lambda \propto nk(T)\Delta H$

Collisional dissociation: H₂ + H → H + H + H
 ∆H = 4.48 eV

Cooling summary

lonized regions

- H excitation requires 10.2 eV ($\sim 10^5$ K)
- ▶ recombination cooling (e⁻ + proton)
- $T < 10^4$ K electronic transitions of metals (O⁺⁺, N⁺)
- main collision partner: electrons

Atomic neutral regions

- ► metals with electronic energies below 1000 K
- \blacktriangleright C⁺ or [CII], 158 $\mu {\rm m}$

Molecular clouds

- ► CO, H₂O
- dust grains