INTERSTELLAR MEDIUM

- Stefano Bovino -

Molecular Clouds

Syllabus: this lecture

- Overview and historical sketch of the ISM
- The Milky Way's ISM and collisional processes
- The interstellar radiation field
- The Interstellar dust
- Chemistry of the ISM
- Heating & Cooling
- Cosmic rays
- Molecular clouds

Our Sun today

- 4.6 billion after he formed
- It is in **Hydrostatic Equilibrium**:
 - Pressure = Gravity
- It is also in **Thermal Equilibrium**
 - Energy which leaves the surface of the sun is replaced by the interior core energy (nuclear fusion)

How did it get this way?

• In spiral galaxies molecular gas is constrained on the arms

Credits: Schinnerer et al. 2013

- Enormous regions out of which stars form
- Densest regions in the ISM
- Stars like the sun formed out of these regions
- Huge amount of cloudiness

- Take up only 1% of the volume of the MW
- But they represent half the mass of the MW
- Typical sizes of 5-200 parsecs
- Masses between 10³ 10⁷ solar masses
- Temperature: 10-30 K
- Cloud densities: 10² 10³ cm⁻³

- Cloud densities: 10² 10³ cm⁻³
- Inside clouds you have overdense regions called cores (n ~ 10⁵ - 10⁶ cm-3)
- This is a starting density of about 10²⁰ times smaller than that of a star... from collapse is a long way to go.

T ~ 8-20 K, n > 10⁴ cm-3

- Star-forming sites / self-gravitating
- Rich chemistry / main component H₂
- Ion-neutral reactions
- Gas-dust interaction

- Microscopic particles: atoms < size < clusters of molecules
- Polycyclic Aromatic Hydrocarbons (PAHs): ~0.5–3nm (5–30 Å)
- Macroscopic particles: size >> molecules
- Dust grains: > 3nm 1 cm

Visible · WFC3 · 2015

How the stars form?

W - POTENTIAL ENERGY

T - KINETIC ENERGY

2T + W = 0

W - POTENTIAL ENERGY

T - KINETIC ENERGY

T₀ - EXTERNAL PRESSURE

$2(T-T_0)+W=0$

W - POTENTIAL ENERGY

T - KINETIC ENERGY

T₀ - EXTERNAL PRESSURE

Tt - TURBULENT KE

$2(T_t+T-T_0) + W = 0$

W - POTENTIAL ENERGY

T - KINETIC ENERGY

T₀ - EXTERNAL PRESSURE

Tt - TURBULENT KE

B - MAGNETIC PRESSURE

$2(T_t+T-T_0) + W + B = 0$

Visible · WFC3 · 2015

Infrared · WFC3 · 2015

Collapse of Giant Molecular Clouds

- A GMC is held up against its own gravity (W) by internal pressure:
 - Gas pressure from internal heat
 - Pressure from embedded magnetic field
- If W > internal pressure —> the entire cloud will start to collapse
- Possible ways to trigger the collapse
 - Cloud-cloud collisions
 - Shocks from nearby SNe explosions

• There are a couple of useful "idelised" parameters that can be used to understand if a cloud is prone to collapse or not.

$$2(T_t+T-T_0) + W + B = 0$$

$$\sum_{i=1}^{n} \alpha_{vir} = \frac{2T}{|W|}$$

Virial parameter

• We can define the viral parameter

$$\mathcal{W} = -\frac{3}{5} \frac{GM^2}{R}$$

$$\mathcal{T} \equiv \frac{3}{2} \bar{\rho} \sigma^2 V_{\rm cl}$$

$$\alpha_{\rm vir} \equiv \frac{2\mathcal{T}}{|\mathcal{W}|} = \frac{5\sigma^2 R}{|GM|}$$

- If alpha > 1, cloud is *supervirial*, tend to diffuse back as kinetic energy dominates
- If alpha < 1 cloud is *subvirial*, gravity takes over and the cloud collapse
- If alpha = 1 cloud is in virial equilibrium

Mass-to-flux ratio

- When $\mu/\mu_{crit} > 1$, $M > M_{\Phi}$, and magnetic force can not halt collapse. The cloud is then said to be *supercritical*.
- When μ/μ_{crit} < 1, M < M_Φ, and the cloud is magnetically supported against collapse. The cloud is then said to be *subcritical*.
- When $\mu/\mu_{crit} = 1$, $M = M_{\Phi}$, and the cloud is in equilibrium.

Credits: Crutcher et al. 2012

20 >

Giant Molecular Clouds: fragmentation

Hierarchical structure of GMCs

	Clouds ^a	Clumps ^b	Cores ^c
$Mass~(M_{\odot})$	$10^3 - 10^4$	50-500	0.5–5
Size (pc)	2–15	0.3–3	0.03–0.2
Aean density (cm^{-3})	50–500	$10^{3}-10^{4}$	$10^4 - 10^5$
Velocity extent (km s ⁻¹)	2-5	0.3–3	0.1–0.3
Crossing time (Myr)	2-4	≈1	0.5–1
Gas temperature (K)	≈10	10–20	8–12
Examples	Taurus, Oph, Musca	B213, L1709	L1544, L1498, B68

Chemistry at small scales

From stars to planets

Scales and Complexity

THERMAL PRESSURE MAGNETIC FIELDS ROTATION