INTERSTELLAR MEDIUM

- Stefano Bovino -

Atomic Structure II

Goal: Understanding these diagrams!

Atomic structure in a nutshell

- Electrons behave both as particles and waves (De Broglie)
- Quantisation of energy (Planck, Bohr)
- Wave function and energy of an atom (solving the S.E.)
- Wavefunction squared represents a probability (Born)

$$R_{nl}(r) = -\left\{\frac{(n-l-1)!}{2n[(n+l)!]^3}\right\}^{1/2} \left(\frac{2}{na_0}\right)^{l+3/2} r^l e^{-r/na_0} L_{n+l}^{2l+1} \left(\frac{2r}{na_0}\right) \quad \text{Radial}$$
$$Y_l^m(\theta,\phi) = \left[\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1/2} P_l^{|m|}(\cos\theta) e^{im\phi} \quad \text{Angular}$$

Hydrogen atom (single electron)

nucleus

Quantum numbers describe orbitals

 $l = 2, m_l = \pm 2$

Orbitals represent regions of probability where an electron can be found

Each orbital can hold up to a maximum of 2 electrons (Pauli principle)

 $l = 2, m_l = 0$ $l = 2, m_l = \pm 1$

• n — principal quantum number

- Specifies the energy of the orbital and the shell
- Assume values n = 1, 2, 3...
- Larger the value of n further away from the nucleus the electron is

Energy

Principal quantum number

- I orbital (angular momentum) quantum number
- Defines the shape of the orbitals
- Assume values I = 0, 1, 2, n-1
- 0123s-orbitalp-orbitald-orbitalf-orbital

• m_l — magnetic quantum number

- Orientation of the angular momentum around the nucleus
- How many orbitals of that kind exist per energy level
- Assume values $m_l = I, I-1,-I$
- 2I + 1 values of m_l for a given value of I

- s, m_s spin magnetic quantum number (z-component)
- Intrinsic angular momentum of the electron
- Assume values $m_s = -1/2, +1/2$

Electronic configuration

- Configuration specifies the orbitals that electrons occupy
- H (1s¹) means one electron occupies a 1s-orbital
- A single configuration (e.g. 2p¹) can split in more levels (different j)

Hund's rules Pauli principle

Aufbau principle

Hund's rules Pauli principle

Example: CI or NII Six electrons 1s²2s²2p²

Multielectrons systems

• Chemists (and spectroscopists) introduced the term symbols

$$^{\text{multiplicity} \rightarrow 2S+1} \{L\} \underset{J \leftarrow \text{Level}}{\leftarrow} \text{orbital angular momentum}$$

Example: Hydrogen atom One electron 1s¹

What is the term symbol of the ground state?

Spin-orbit coupling

- Rotation of an electrical charge generates a magnetic dipole (classical electrodynamics)
- The spin and orbital angular momenta (e-) couple
- This generates a splitting of a given energetic level (fine structure)
- This can be further split by the presence of a magnetic field (hyperfine structure)

The energy shift depends on L and S \underline{s}

Spin-orbit coupling (fine)

Doublet

j = | + s

Spin-orbit coupling

LAE galaxies

Long Wavelength

Short Wavelength

Spin-orbit coupling (hyperfine)

Chowdhury+, Nature, 2020

Obtained with Giant Metrewave Radio Telescope (PUNA)

Multielectrons systems

• Chemists (and spectroscopists) introduced the term symbols

$$^{\text{multiplicity} \rightarrow 2S+1} \{L\} \underset{J \leftarrow \text{Level}}{\leftarrow} \text{orbital angular momentum}$$

Example: CI or NII Six electrons 1s²2s²2p² ³P (L=1, S=1), ¹D (L=2, S=0), ¹S (L=0, S=0)

Symbol	Name	Allowed Range
L	Total orbital angular momentum	$ l_1 + l_2 , \ldots, l_1 - l_2 $
M_l	Magnet Quantum number	$[m_{l1} + m_{l2}, \ldots, -m_{l1} - m_{l2}]$
M_s	Spin Magnetic Quantum Number	$ m_{s1} + m_{s2} , \ldots, m_{s1} - m_{s2} $
S	Inherent Spin Number	$ s_1 + s_2 , \ldots, s_1 - s_2 $
М	Multiplicity	2S+1
J	Total Angular Momentum	$L + S, \ldots, L - S $

Multielectrons:

Non-equivalent
 Equivalent

Electrons with different n and/or I (3p13d1)

Electrons with same n and I (2p²)

Non-equivalent electrons		Equivalent electrons					
Configuration	Terms	Configuration	Terms ^a				
s^1s^1	$^{1,3}S$	p^2	${}^{1}S, {}^{3}P, {}^{1}D$				
s^1p^1	$^{1,3}P$	p^3	${}^{4}S,{}^{2}P,{}^{2}D$				
s^1d^1	$^{1,3}D$	d^2	${}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G$				
$s^1 f^1$	$^{1,3}F$	d^3	$^{2}P,^{4}P,^{2}D(2),^{2}F,$				
p^1p^1	$^{1,3}S, ^{1,3}P, ^{1,3}D$		${}^{4}F,{}^{2}G,{}^{2}H$				
p^1d^1	$^{1,3}P,^{1,3}D,^{1,3}F$	d^4	$^{1}S(2), ^{3}P(2), ^{1}D(2),$				
p^1f^1	$^{1,3}D, ^{1,3}F, ^{1,3}G$		$^{3}D,^{5}D,^{1}F,^{3}F(2),$				
d^1d^1	$^{1,3}S, ^{1,3}P, ^{1,3}D, ^{1,3}F, ^{1,3}G$		${}^{1}G(2), {}^{3}G, {}^{3}H, {}^{1}I$				
$d^1\!f^1$	$^{1,3}P, ^{1,3}D, ^{1,3}F, ^{1,3}G, ^{1,3}H$	d^5	${}^{2}S, {}^{6}S, {}^{2}P, {}^{4}P, {}^{2}D(3),$				
$f^1 f^1$	$^{1,3}S, ^{1,3}P, ^{1,3}D, ^{1,3}F, ^{1,3}G,$		$^{4}D,^{2}F(2),^{4}F,^{2}G(2),$				
	$^{1,3}H,^{1,3}I$		${}^{4}G,{}^{2}H,{}^{2}I$				

Table 7.2 Terms arising from some configurations of non-equivalent and equivalent electrons

^a The numbers in brackets indicate that a particular term occurs more than once.

Quantum number	Values														
$(m_\ell)_1$	1	1	1	1	1	1	1	1	1	0	0	0	0	0	- 1
$(m_\ell)_2$	1	0	0	0	0	- 1	-1	- 1	- 1	0 -	- 1	- 1	- 1	- 1	— 1
$(m_{s})_{1}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
$(m_s)_2$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
$M_L = \sum_i (m_\ell)_i$	2	1	1	1	1	0	0	0	0	0 -	- 1	— 1	- 1	- 1	— 2
$M_s = \sum_i^i (m_s)_i$	0	1	0	0	— 1	1	0	0	— 1	0	1	0	0	— 1	0
Pairs of values of	of M_L	and	M_S ca	an be	rearr	anged	l as fo	ollows	5:						
M_L	2	1	0	— 1	- 2	1	0	— 1	1	0 -	- 1	1	0	- 1	0
M_S	_0	0	0	0	0	_1	1	1	0	0	0	- 1	- 1	<u> </u>	, O
			^{1}D)						^{3}P					¹ S

Table 7.3	Derivation	of terms	arising	from	two	equivalent	<i>p</i> electrons
-----------	------------	----------	---------	------	-----	------------	--------------------

- The state with the largest value of S is the most stable
- For states with the same S, the state with largest L is the most stable
- If the states have same S and L, the state with the smallest J is the most stable (if half filled)
- If more than half filled the state with largest J is the most stable

Term symbols: more

- Degeneracy factor g = (2S + 1) x (2L + 1)
- Example: ³P term (S = 1, L = 1) has a $g = 3 \times 3 = 9$
- If we take into consideration spin-orbit coupling these states are split into different fine structure levels
- We have then degeneracy g = 2J + 1

 $^{\text{multiplicity} \rightarrow 2S+1} \{L\} \underset{J \leftarrow \text{Level}}{\leftarrow} \text{orbital angular momentum}$

Selection rules

Are restrictions that govern the possible (or allowed) transitions from a state to another

 $\Delta L = \pm 1$ Follow conservation of angular momentum $\Delta S = 0$ Spin can only change by B $\Delta J = 0, \pm 1$ Follow conservation of angular momentum

Selection rules: Spin

Singlet-Singlet, Doublet-Doublet etc. allowed

Singlet-Triplet etc. forbidden

It is also a consequence of the Pauli principle

allowed: $s \leftrightarrow p, p \leftrightarrow d$ forbidden: $d \leftrightarrow d, p \leftrightarrow p$

Selection rules Lyman series of H

 $np^{2}P_{1/2} \rightarrow 1s^{2}S_{1/2} \quad \begin{pmatrix} \Delta L = 1 \\ \Delta S = 0 \\ \Delta I = 0 \end{pmatrix}$

 $np^{2}P_{3/2} \rightarrow 1s^{2}S_{1/2} \quad \begin{pmatrix} \Delta L = 1 \\ \Delta S = 0 \\ \Delta J = -1 \end{pmatrix}$

 $\Delta L = \pm 1$ $\Delta S = 0$ $\Delta J = 0, \pm 1$

Allowed transition ${}^{3}D_{1} - {}^{3}P_{0}$ $A_{ul} = 2.18 \times 10^{8} \text{ s}^{-1}$ Spin forbidden transition ${}^{5}S_{2} - {}^{3}P_{2}$

 $A_{ul} = 1.27 \times 10^2 \text{ s}^{-1}$

Forbidden transition ${}^{1}D_{2} - {}^{3}P_{1}$ A_{ul} = 1.17 x 10⁰ s⁻¹

- Intersystem lines are 10⁶ times weaker than permitted transitions
- Forbidden transition are 10²-10⁶ times weaker than intersystem ones
- Forbidden transitions are important in astrophysics in particular in the low-dense environment where timescales are much longer and slow decay could occur (collisions very rare)

Strongest forbidden lines observed in the ISM are from doubly ionized oxygen [OIII]

158 micron [CII] transition

 $\mathbf{J} = \mathbf{L} + \mathbf{S}$

Sodium, Na, Z=11

Molecular Quantum Mechanics (Atkins & Friedman) Modern Spectroscopy (Hollas)