INTERSTELLAR MEDIUM

- Stefano Bovino -

Molecular structure

Energy operator

Classical-mechanical observables and their corresponding quantum-mechanical operators.

Observable		Operator	
Name	Symbol	Symbol	Operation
Position	x	Â	Multiply by x
	r	Â	Multiply by r
Momentum	<i>P</i> _x	\hat{P}_x	$-i\hbar \frac{\partial}{\partial x}$
	р	Ŷ	$-i\hbar\left(\mathbf{i}\frac{\partial}{\partial x}+\mathbf{j}\frac{\partial}{\partial y}+\mathbf{k}\frac{\partial}{\partial z}\right)$
Kinetic energy	K _x	\hat{K}_x	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}$
	Κ	Ŕ	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)$
			$= -\frac{\hbar^2}{2m}\nabla^2$
Potential energy	V(x)	$\hat{V}(\hat{x})$	Multiply by $V(x)$
	V(x, y, z)	$\hat{V}(\hat{x},\hat{y},\hat{z})$	Multiply by $V(x, y, z)$
Total energy	Ε	\hat{H}	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)$
			+ V(x, y, z)
		,	$= -\frac{n^2}{2m}\nabla^2 + V(x, y, z)$
Angular momentum	$L_x = yp_z - zp_y$	\hat{L}_x	$-i\hbar\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)$
	$L_y = zp_x - xp_z$	\hat{L}_{y}	$-i\hbar\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)$
	$L_z = xp_y - yp_x$	\hat{L}_z	$-i\hbar\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)$

Hamiltonian in quantum mechanics

 $\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)|\Psi\rangle = E|\Psi\rangle$

- Provided energy levels for Hydrogen atom fully in agreement with Rydberg's law
- > The atomic SE can be solved analytically for H in spherical coordinates

Hydrogen Electron Orbitals Probability Density (2.1.0)
(2.1.0)
(2.1.1)
Hydrogen Electron Orbitals $\psi_{n\ell m}(r, \vartheta, \varphi) = \sqrt{\left(\frac{\rho}{r}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_\ell^m(\vartheta, \varphi)$ $\rho = 2r/na_0$ darksilverflame.deviantart.com (3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.0)
(3.1.

0

0

(2,0,0)

(3,0,0)

(4,3,1)

(4,1,1)

(4,3,2)

(4,2,0)

(4,2,1)

(4,2,2)

Atomic structure

- Location/Energy is determined by a set of four quantum numbers
- n, l, m_l, m_s
- Configuration specifies the orbitals that electrons occupy (e.g. 1s)
- A single configuration (e.g. 2p¹) can split in more levels or state

Term symbols and transitions

 $\stackrel{\text{multiplicity} \to 2S+1}{} \{L\} \underset{J \leftarrow \text{Level}}{\leftarrow} \text{orbital angular momentum}$

Spin-orbit coupling

- Rotation of an electrical charge generates a magnetic dipole (classical electrodynamics)
- The spin and orbital angular momenta couple
- This generates a splitting of a given energetic level (fine structure)
- This can be further split by the presence of a magnetic field (hyperfine structure)

Atomic structure: selection rules

Туре	Mechanism	Rules	
"allowed"	electric dipole	 Parity must change ΔL = 0, ±1 ΔJ = 0, ±1 but not J=0→0 only one e- wavefunction <i>nl</i> changes with Δ<i>l</i> = ±1 ΔS = 0 	
"semi- forbidden"	electric dipole but with ΔS ≠ 0 from configuration mixing due to relativistic effects	same as "allowed" except violates #5	
"forbidden"	magnetic dipole or electric quadrupole	violates at least one other selection rule other than #5	

8

Allowed transition ${}^{3}D_{1} - {}^{3}P_{0}$ $A_{ul} = 2.18 \times 10^{8} \text{ s}^{-1}$ Spin forbidden transition ${}^{5}S_{2} - {}^{3}P_{2}$

 $A_{ul} = 1.27 \times 10^2 \, s^{-1}$

Forbidden transition ${}^{1}D_{2} - {}^{3}P_{1}$ $A_{ul} = 1.17 \times 10^{0} s^{-1}$

- Intersystem lines are 10⁶ times weaker than permitted transitions
- Forbidden transition are 10²-10⁶ times weaker than intersystem ones
- Forbidden transitions are important in astrophysics in particular in the low-dense environment where timescales are much longer and slow decay could occur (e.g. [CII] 158 micron ²P_{1/2} - ²P_{3/2})

Molecules: adding degrees of freedom

10

- the internal energy is quantized
 - $E_t = E_{el} + E_{vib} + E_{rot}$

Molecular structure

Molecules Hamiltonian

Born-Oppenheimer approximation (1)

ROBERT OPPENHEIMER

MAX BORN

Born-Oppenheimer approximation (2)

 $M_{nuclei} >> m_e$ $v_{nuclei} << v_e$

 Electrons can respond almost instantaneously to displacement of nuclei (like flies)

< <u>14</u> >

Born-Oppenheimer approximation (3)

- We can treat them as stationary while the electrons move
- Solve the SE considering the nuclei as being fixed (R parameter)
- Nuclei provide a static potential at fixed geometry
- Different nuclei arrangements may then be adopted and the calculations repeated
- The set of solutions provide the molecular potential energy curve (diatomic molecule) or a surface in general

Separation of variables

Potential energy curves (PEC)

 $\Psi(r,R) = \Psi_{el}(r,R)\Psi_{nuclei}(R)$ $H\Psi(r,R) = E_{tot}\Psi(r,R)$ $H = H_{el} + H_{nuclei}$ $H_{el}\Psi_{el}(r;R) = E_{el}\Psi_{el}(r;R)$ $H_{nuclei}\Psi_{nuclei} = E_{nuclei}\Psi_{nuclei}$ $H_{nuclei} = T_N + V(R) + V_{NN}$

Born-Oppenheimer approximation (3)

- SE for molecules is solved in two steps
- Electron motion is much faster than nuclear (vibrations and rotations)
 - Motion of the electrons around the nuclei at fixed position (electronic energy in which the nuclei are moved)
 - Nuclear WFs are searched by considering that the nuclei evolve under the PEC/PES associated to a particular electronic configuration (translation+rotation+vibration)

POTENTIAL ENERGY CURVES

WAVE FUNCTIONS (MOLECULAR ORBITALS)

LARGER PROBABILITY

Note: central cluster of electrons exaggerated for illustration. Only a probability cloud exists

Term symbols for molecules

$$M_L = m_{l1} + m_{l2} + \cdots$$

SUM OF THE ANGULAR MOMENTUM OF THE ELECTRONS IN THE MOLECULAR ORBITALS < <u>22</u> >

where $m_l = 0$ for a σ orbital, $m_l = \pm 1$ for a π orbital

Example: molecular hydrogen

ELECTRONIC CONFIGURATION

where $m_l = 0$ for a σ orbital, $m_l = \pm 1$ for a π orbital

$$\begin{array}{c|c} |M_L| & \text{Letter} \\ \hline 0 & \Sigma \\ 1 & \Pi \\ 2 & \Delta \\ 3 & \Phi \end{array} \end{array} \begin{array}{c} M_s = m_{s1} + m_{s2} + \cdots \\ \hline \text{For } S = 0, M_S = 0 \\ \hline 2S+1 |M_L| \end{array} \begin{array}{c} 1 \\ \Sigma \text{ (a singlet sigma state)} \end{array}$$

Molecule	Electron configuration	Term symbol
H_2^+	$(1\sigma_{g})^{1}$	$^{2}\Sigma_{g}^{+}$
H ₂	$(1\sigma_{g})^{2}$	$1\Sigma_{g}^{+}$
He_2^+	$(1\sigma_g)^2(1\sigma_u)^1$	$2\Sigma_{u}^{+}$
Li ₂	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2$	$^{1}\Sigma_{g}^{+}$
\mathbf{B}_2	$(1\sigma_{g})^{2}(1\sigma_{u})^{2}(2\sigma_{g})^{2}(2\sigma_{u})^{2}(1\pi_{u})^{1}(1\pi_{u})^{1}$	$^{3}\Sigma_{g}^{-}$
C_2	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^2 (1\pi_u)^2$	$1\Sigma_{g}^{+}$
N_2^+	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^2 (1\pi_u)^2 (3\sigma_g)^1$	$^{2}\Sigma_{g}^{+}$
N ₂	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^2 (1\pi_u)^2 (3\sigma_g)^2$	$^{1}\Sigma_{g}^{+}$
O_2^+	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (3\sigma_g)^2 (1\pi_u)^2 (1\pi_u)^2 (1\pi_g)^1$	$^{2}\Pi_{g}$
O_2	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (3\sigma_g)^2 (1\pi_u)^2 (1\pi_u)^2 (1\pi_g)^1 (1\pi_g)^1$	${}^{3}\Sigma_{g}^{-}$
\mathbf{F}_2	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_g)^2 (3\sigma_g)^2 (1\pi_u)^2 (1\pi_u)^2 (1\pi_g)^2 ($	$^{1}\Sigma_{g}^{+}$

.

Rigid rotor approximation

Energy spacing | Boltzmann distribution

Inelastic collisions

Molecules are excited through collisions and $\Delta J = \pm 1$

Spontaneous emission:

$$A_{ul} \propto \nu^3 |\mu_d|^2 \tag{2}$$

- the molecule must have a permanent dipole moment
- a critical density required for significant excitation

Bulk of molecule transitions

$$n_{cr} \propto B^3 J^3 |\mu_d|^2 \tag{4}$$

Larger dipole moment $(\mu_d) \rightarrow$ higher n_{cr} (density diagnostic)

- ▶ HCN $\rightarrow \mu_d = 2.98 \text{ D}$
- ► $H_2O \rightarrow \mu_d = 1.85 D$
- ▶ CO → $\mu_d = 0.11$ D

Rotational spectrum example

Shirley2015

Dipole moment integral

- the interaction of the electric component of the electromagnetic field with the electric dipole associated with the transition
- Selection rules

Fig. 10.1 In order for a transition to be electric-dipole allowed, it must possess a degree of dipolar character. A purely spherically symmetrical (or some other non-dipolar) redistribution of charge cannot interact with the electric field vector of the electromagnetic field.

Most abundant molecule

 H_2 symmetric homonuclear molecule:

no dipole moment

- ► H₂ possesses a quadrupole (asymmetric distr. of charges)
- strict selection rules for transitions $\Delta J = \pm 2$

Let's calculate the minimum excitation temperature for H_2 (J = 2 - 0)

$$\hbar = 1.054 \times 10^{-27} \text{ erg s}$$

 $k_B = 1.38 \times 10^{-16} \text{ erg K}^{-1}$
 $m_{\mathrm{H}} = 1.67 \times 10^{-24} \text{ g}$
 $r_e(\mathrm{H}_2) = 0.75 \text{ Å}$

 $1 \text{ Angstrom} = 10^{-8} \text{ cm}$

The excitation rotational temperature for J = 2

514 K!!! (28 µm)

- difficult to observe in dense regions (even if most abundant molecule)
- ▶ in shocked regions, where *T* becomes high enough
- or in the vicinity of hot stars

Probe for molecular hydrogen

- ► $x_{\rm CO}/x_{\rm H_2} \sim 10^{-4}$
- higher Einstein A-values

	CO	H ₂
Symmetry	asymmetric	symmetric
Dipole moment	0.112 Debye	none
Binding energy	11.09 eV	4.48 eV
Isotope variants	¹³ CO, C ¹⁷ O, C ¹⁸ O	none
Rotational constant	2.77 K	87.5 K
First transition	2.6 mm (5.5 K)	28.2 µm (514 K)

Vibrational energies

 $E_v = (v + 1/2)h\nu$ v = 0, 1, 2...

- Molecules introduce complexity compared to atoms
- Molecular energy is quantized
- BO approximation approx. allows us to solve for the internal structure of molecules
- Electronic + Rotational + Vibrational energies
- Remind: transitions between different states allow us to observe atoms and molecules in the ISM

Transitions	Energy (eV)	Temperature (K)	λ
Electronic	4 eV	40,000 K	visible and UV
Vibrational	0.1 eV	1,000 K	NIR/MIR (\sim 2-20 μ m)
Rotational	< 0.01 eV	< 100 K	mm/submm