INTERSTELLAR MEDIUM

- Stefano Bovino -

Molecular structure

Energy operator

Classical-mechanical observables and their corresponding quantum-mechanical operators.

Observable		Operator	
Name	Symbol	Symbol	Operation
Position	x	\hat{X}	Multiply by x
	r	$\hat{\mathbf{R}}$	Multiply by \mathbf{r}
Momentum	p_{x}	\hat{P}_{x}	$-i \hbar \frac{\partial}{\partial x}$
	p	$\hat{\mathbf{P}}$	$-i \hbar\left(\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}\right)$
Kinetic energy	K_{x}	\hat{K}_{x}	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
	K	\hat{K}	$-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$
			$=-\frac{\hbar^{2}}{2 m} \nabla^{2}$
Potential energy	$V(x)$	$\hat{V}(\hat{x})$	Multiply by $V(x)$
	$V(x, y, z)$	$\hat{V}(\hat{x}, \hat{y}, \hat{z})$	Multiply by $V(x, y, z)$
Total energy	E	\hat{H}	$\begin{aligned} & -\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \\ & +V(x, y, z) \end{aligned}$
Angular momentum			$=-\frac{n^{2}}{2 m} \nabla^{2}+V(x, y, z)$
	$L_{x}=y p_{z}-z p_{y}$	\hat{L}_{x}	$-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)$
	$L_{y}=z p_{x}-x p_{z}$	\hat{L}_{y}	$-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)$
	$L_{z}=x p_{y}-y p_{x}$	\hat{L}_{z}	$-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$

Hamiltonian in quantum mechanics

$$
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V\right)|\Psi\rangle=E|\Psi\rangle
$$

Hydrogen atom

- Provided energy levels for Hydrogen atom fully in agreement with Rydberg's law
- The atomic SE can be solved analytically for H in spherical coordinates

$(2,0,0)$

(3,0,0)

(2,1,0)

(3,1,1)
(2,1,1)

Hydrogen Electron Orbitals Probability Density $\begin{aligned} \psi_{n \ell m}(r, \vartheta, \varphi) & =\sqrt{\left(\frac{\rho}{r}\right)^{3} \frac{(n-\ell-1)!}{2 n(n+\ell)!}} e^{-\rho / 2} \rho^{\ell} L_{n-\ell-1}^{2 \ell+1}(\rho) \cdot Y_{\ell}^{m}(\vartheta, \varphi) \\ \rho & =2 r / n a_{0} \quad \text { darksilverflame.deviantart.com }\end{aligned}$

(4,3,1)

(3,2,0)

$(3,2,1)$
$(3,2,2)$

$(4,2,2)$

Atomic structure

- Location/Energy is determined by a set of four quantum numbers
- $\mathrm{n}, \mathrm{l}, \mathrm{m}, \mathrm{m}_{\mathrm{s}}$
- Configuration specifies the orbitals that electrons occupy (e.g. 1s)
- A single configuration (e.g. 2 p 1) can split in more levels or state

Term symbols and transitions

multiplicity $\rightarrow 2 S+1\{L\} \underset{J \leftarrow \text { Level }}{\leftarrow}$ orbital angular momentum

Spin-orbit coupling

- Rotation of an electrical charge generates a magnetic dipole (classical electrodynamics)
- The spin and orbital angular momenta couple
- This generates a splitting of a given energetic level (fine structure)
- This can be further split by the presence of a magnetic field (hyperfine structure)

Atomic structure: selection rules

Type	Mechanism	Rules
"allowed"	electric dipole	1) Parity must change 2) $\Delta L=0, \pm 1$ 3) $\Delta J=0, \pm 1$ but not $\mathrm{J}=0 \rightarrow 0$ 4) only one e-wavefunction $\boldsymbol{n l}$ changes with $\Delta l= \pm 1$ 5) $\Delta S=0$
"semiforbidden"	electric dipole but with $\Delta S \neq 0$ from configuration mixing due to relativistic effects	same as "allowed" except violates \#5
"forbidden"	magnetic dipole or electric quadrupole	violates at least one other selection rule other than \#5

General rules

- Intersystem lines are 10^{6} times weaker than permitted transitions
- Forbidden transition are 10^{2-106} times weaker than intersystem ones
- Forbidden transitions are important in astrophysics in particular in the low-dense environment where timescales are much longer and slow decay could occur (e.g. [CII] 158 micron ${ }^{2} \mathrm{P}_{1 / 2}-{ }^{2} \mathrm{P}_{3 / 2}$)

Molecules: adding degrees of freedom

symmetric stretching

asymmetric stretching vibrational motion

rotational motion

translational motion

fact to know:

- the internal energy is quantized

$$
E_{t}=E_{e l}+E_{v i b}+E_{r o t}
$$

Molecular structure

Molecules Hamiltonian

$$
\widehat{H}=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

$\mathrm{H}_{2}{ }^{+}$simplest molecule (1 electron)

$$
\begin{aligned}
\widehat{H}= & -\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{\hbar^{2}}{2 m_{P}}\left(\nabla_{A}^{2}+\nabla_{B}^{2}\right) \\
& -\frac{e^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}\right)+\frac{e^{2}}{4 \pi \epsilon_{0} R}
\end{aligned}
$$

$$
H_{2} \underbrace{\mathrm{~S}_{1 A}}_{\mathrm{B}}
$$

Born-Oppenheimer approximation (1)

ROBERT OPPENHEIMER
MAX BORN

Born-Oppenheimer approximation (2)

$M_{n u c l e i} \gg m_{e}$
$v_{n u c l e i} \ll v_{e}$

- Electrons can respond almost instantaneously to displacement of nuclei (like flies)

Born-Oppenheimer approximation (3)

- We can treat them as stationary while the electrons move
- Solve the SE considering the nuclei as being fixed (R parameter)
- Nuclei provide a static potential at fixed geometry
- Different nuclei arrangements may then be adopted and the calculations repeated
- The set of solutions provide the molecular potential energy curve (diatomic molecule) or a surface in general

Separation of variables

Potential energy curves (PEC)

$$
\begin{aligned}
& \Psi(r, R) \Psi_{e l}(r, R) \Psi_{n u c l e i}(R) \\
& H \Psi(r, R)=E_{t o t} \Psi(r, R) \\
& H=H_{e l}+H_{n u c l e i} \\
& H_{e l} \Psi_{e l}(r ; R)=E_{e l} \Psi_{e l}(r ; R) \\
& H_{n u c l e i} \Psi_{n u c l e i}=E_{n u c l e i} \Psi_{n u c l e i} \\
& H_{n u c l e i}=T_{N}+V(R)+V_{N N}
\end{aligned}
$$

Born-Oppenheimer approximation (3)

- SE for molecules is solved in two steps
- Electron motion is much faster than nuclear (vibrations and rotations)
- Motion of the electrons around the nuclei at fixed position (electronic energy in which the nuclei are moved)
- Nuclear WFs are searched by considering that the nuclei evolve under the PEC/PES associated to a particular electronic configuration (translation+rotation+vibration)

(a)

LARGER PROBABILITY

Note: central cluster of electrons exaggerated for illustration. Only a probability cloud exists

Lowest energy state of unbound H atom

Term symbols for molecules

SUM OF THE ANGULAR

$M_{L}=m_{l 1}+m_{l 2}+\cdots$ MOMENTUM OF THE ELECTRONS IN THE MOLECULAR ORBITALS
where $m_{l}=0$ for a σ orbital, $m_{l}= \pm 1$ for a π orbital

$\left\|M_{L}\right\|$	Letter
0	Σ
1	Π
2	Δ
3	Φ

$$
\begin{aligned}
& M_{s}=m_{s 1}+m_{s 2}+\cdots \\
& \text { For } S=0, M_{S}=0 \\
& \text { for } S=1 / 2, M_{S}= \pm 1 / 2
\end{aligned}
$$

$$
\text { for } S=1, M_{S}= \pm 1,0
$$

Example: molecular hydrogen

where $m_{l}=0$ for a σ orbital, $m_{l}= \pm 1$ for a π orbital

$\left\|M_{L}\right\|$	Letter
0	Σ
1	Π
2	Δ
3	Φ

$$
M_{s}=m_{s 1}+m_{s 2}+\cdots
$$

$$
\text { For } S=0, M_{S}=0
$$

\mathbf{H}_{2}^{+}	$\left(1 \sigma_{g}\right)^{1}$	${ }^{2} \Sigma_{g}^{+}$
\mathbf{H}_{2}	$\left(1 \sigma_{g}\right)^{2}$	${ }^{1} \Sigma_{g}^{+}$
He_{2}^{+}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{1}$	${ }^{2} \Sigma_{u}^{+}$
Li_{2}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}$	${ }^{1} \Sigma_{g}^{+}$
B_{2}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(1 \pi_{u}\right)^{1}\left(1 \pi_{u}\right)^{1}$	${ }^{3} \Sigma_{g}^{-}$
C_{2}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}$	${ }^{1} \Sigma_{g}^{+}$
N_{2}^{+}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(3 \sigma_{g}\right)^{1}$	${ }^{2} \Sigma_{g}^{+}$
N_{2}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(3 \sigma_{g}\right)^{2}$	${ }^{1} \Sigma_{g}^{+}$
O_{2}^{+}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(3 \sigma_{g}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{g}\right)^{1}$	${ }^{2} \Pi_{g}$
O_{2}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(3 \sigma_{g}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{g}\right)^{1}\left(1 \pi_{g}\right)^{1}$	${ }^{3} \Sigma_{g}^{-}$
F_{2}	$\left(1 \sigma_{g}\right)^{2}\left(1 \sigma_{u}\right)^{2}\left(2 \sigma_{g}\right)^{2}\left(2 \sigma_{u}\right)^{2}\left(3 \sigma_{g}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{u}\right)^{2}\left(1 \pi_{g}\right)^{2}\left(1 \pi_{g}\right)^{2}$	${ }^{1} \Sigma_{g}^{+}$

Molecular internal motion

Rigid rotor approximation

$$
E_{\text {rot }}=B J(J+1)
$$

Energy spacing | Boltzmann distribution

$$
\frac{N_{J}}{N}=\frac{2 J+1}{q} \mathrm{e}^{-b c B J(J+1) / k T}
$$

6

\qquad
5

4
$\xrightarrow{\square}$

Inelastic collisions

Molecules are excited through collisions and $\Delta J= \pm 1$

Spontaneous emission:

$$
\begin{equation*}
A_{u l} \propto \nu^{3}\left|\mu_{d}\right|^{2} \tag{2}
\end{equation*}
$$

- the molecule must have a permanent dipole moment
- a critical density required for significant excitation

Bulk of molecule transitions

$$
\begin{equation*}
n_{c r} \propto B^{3} J^{3}\left|\mu_{d}\right|^{2} \tag{4}
\end{equation*}
$$

Larger dipole moment $\left(\mu_{d}\right) \rightarrow$ higher $n_{c r}$ (density diagnostic)

- $\mathrm{HCN} \rightarrow \mu_{d}=2.98 \mathrm{D}$
- $\mathrm{H}_{2} \mathrm{O} \rightarrow \mu_{d}=1.85 \mathrm{D}$
- $\mathrm{CO} \rightarrow \mu_{d}=0.11 \mathrm{D}$

Rotational spectrum example

Dipole moment integral

- the interaction of the electric component of the
electromagnetic field with the electric dipole associated with the transition
- Selection rules

Fig. 10.1 In order for a transition to be electric-dipole allowed, it must possess a degree of dipolar character. A purely spherically symmetrical (or some other non-dipolar) redistribution of charge cannot interact with the electric field vector of the electromagnetic field.

Most abundant molecule

H_{2} symmetric homonuclear molecule:

- no dipole moment
- H_{2} possesses a quadrupole (asymmetric distr. of charges)
- strict selection rules for transitions $\Delta J= \pm 2$

Let's calculate the minimum excitation temperature for H_{2} ($J=2-0$)

$$
\begin{aligned}
& \hline \hbar=1.054 \times 10^{-27} \mathrm{erg} \mathrm{~s}^{2} \\
& k_{B}=1.38 \times 10^{-16} \mathrm{erg} \mathrm{~K}^{-1} \\
& m_{\mathrm{H}}=1.67 \times 10^{-24} \mathrm{~g} \\
& r_{e}\left(\mathrm{H}_{2}\right)=0.75 \AA \\
& \hline \hline
\end{aligned}
$$

A simple exercise

- The excitation rotational temperature for $J=2$

$$
\begin{aligned}
& \hbar=1.054 \times 10^{-27} \mathrm{erg} \mathrm{~s} \\
& k_{B}=1.38 \times 10^{-16} \mathrm{erg} \mathrm{~K}^{-1} \\
& r_{e q}\left(\mathrm{H}_{2}\right)=0.75 \AA \\
& m_{\mathrm{H}}=1.67 \times 10^{-24} \mathrm{~g}
\end{aligned}
$$

$$
E_{\text {rot }}=B J(J+1) \quad B=\frac{\hbar^{2}}{2 I}
$$

Question: Can we observe H_{2} in dense regions (e.g. $\mathrm{n} \sim 10^{4} \mathrm{~cm}^{-3}$, $\mathrm{T} \sim 10 \mathrm{~K}$)?

A simple exercise

$514 \mathrm{~K}!!!(28 \mu \mathrm{~m})$

- difficult to observe in dense regions (even if most abundant molecule)
- in shocked regions, where T becomes high enough
- or in the vicinity of hot stars

Probe for molecular hydrogen

- $x_{\mathrm{CO}} / x_{\mathrm{H}_{2}} \sim 10^{-4}$
- higher Einstein A-values

	CO	H_{2}
Symmetry	asymmetric	symmetric
Dipole moment	0.112 Debye	none
Binding energy	11.09 eV	4.48 eV
Isotope variants	${ }^{13} \mathrm{CO}, \mathrm{C}^{17} \mathrm{O}, \mathrm{C}^{18} \mathrm{O}$	none
Rotational constant	2.77 K	87.5 K
First transition	$2.6 \mathrm{~mm}(5.5 \mathrm{~K})$	$28.2 \mu \mathrm{~m}(514 \mathrm{~K})$

Vibrational energies

symmetric stretching
 vibrational motion

rotational motion

$$
\begin{aligned}
& E_{v}=(v+1 / 2) h \nu \\
& v=0,1,2 \ldots
\end{aligned}
$$

Observations

- Molecules introduce complexity compared to atoms
- Molecular energy is quantized
- BO approximation approx. allows us to solve for the internal structure of molecules
- Electronic + Rotational + Vibrational energies
- Remind: transitions between different states allow us to observe atoms and molecules in the ISM

Transitions	Energy (eV)	Temperature (K)	λ
Electronic	4 eV	$40,000 \mathrm{~K}$	visible and UV
Vibrational	0.1 eV	$1,000 \mathrm{~K}$	NIR/MIR $(\sim 2-20 \mu \mathrm{~m})$
Rotational	$<0.01 \mathrm{eV}$	$<100 \mathrm{~K}$	$\mathrm{~mm} /$ submm

