INTERSTELLAR MEDIUM

- Stefano Bovino -

Collisions and chemistry in the ISM

Govern many key processes in the ISM

- Distribute energy
- Ionize the medium (collisional ionization)
- Recombination (radiative recombination)
- Excitation and loss of energy via de-excitation
- Govern chemistry (reactions)
- Gas-dust interaction and grain-grain

Collisions: different types of

< 3 >

- Elastic collisions: only kinetic energy is exchanged (momentum)
 - viscosity (resistance to flow)
 - electrical conductivity (resistance to electrical currents)
 - thermal conductivity (resistance to heat flow)
- Inelastic collisions: kinetic and internal energy is exchanged
 - excitation/de-excitation processes
- **Reactive collisions**: chemical structure changes
 - (control chemistry of ISM)

Collisions: rate coefficients

• It is important to become comfortable with the definition of collisional

rate or collisional rate coefficients

• How these depend on temperature

Collisions: rate coefficients

$$f(v)dv = 4\pi v^2 \left(\frac{\mu}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{\mu v^2}{2k_B T}\right) dv$$

$$k(T) = \langle \sigma v \rangle = 4\pi \left(\frac{\mu}{2\pi k_B T}\right)^{3/2} \int_0^\infty \sigma(v) v^3 \exp\left(-\frac{\mu v^2}{2k_B T}\right) dv$$

Collisions: different types of

- Neutral-neutral
- Charged-neutral
- Charged-charged

Depends on the type of interaction (long-range)

No attractive forces (hard spheres interaction)

$$k = \sigma v_{AB} = \pi (r_A + r_B)^2 \left(\frac{8k_BT}{\pi\mu}\right)^{1/2}$$

Charged-neutral

Polar molecules have a permanent dipole moment Charges can induce a dipole moment in non-polar molecules

ION-NEUTRAL INTERACTION

Polarizability indicates how easy the molecule electrons can be displaced by an electric field

Charged-neutral

Polar molecules have a permanent dipole moment Charges can induce a dipole moment in non-polar molecules

Polarizability indicates how easy the molecule electrons can be displaced by an electric field

 $k = k_L = 2\pi e \sqrt{\frac{\alpha}{\mu}}$

Charged-neutral

Example: $H_2^+ + H_2 \rightarrow H_3^+ + H_3$

• a "cornerstone" reaction in molecular clouds: H_2 ionized by photons, CRs, X-rays, reacts with ambient H_2

Charged-neutral (momentum transfer)

- neutrals
- ions, electrons

- Charged particles (ions and electrons) are "attached" to B-field lines.
- Neutrals feel the gravitational field and "slip" trough the B-field.
- However neutrals collide with ions

 → the B-field acts on neutrals indirectly
 through collisions (ambipolar diffusion).
- The process is controlled by elastic collisions (momentum-transfer cross section).

Charged-charged interaction

- **Collisional ionization**: when the gain in kinetic energy is larger than the ionization potential of the collider.
- Inelastic collision electrons-ions: responsible for much of the line radiation emitted by hot gas, from H II regions to supernova remnants
- How electrons distribute their energy among other gas particles (e.g. **photoelectric heating**)

General comments on kinetics

- 1. $A + B \rightarrow P$ (two-body reactions)
- 2. A + photon \rightarrow P (photo-reactions)
- 3. $A + B + C \rightarrow P$ (three-body reactions)

$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B} \qquad (1) \quad \text{units of } k(T): \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$$
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A} \qquad (2) \quad \text{units of } k(T): \ \mathrm{s}^{-1}$$
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B}n_{\rm C} \qquad (3) \quad \text{units of } k(T): \ \mathrm{cm}^6 \ \mathrm{s}^{-1}$$

H-alpha line (orange) (n=3-> n=2)

Balmer represents the strongest line

UV radiation ionize H which then recombines

Produce a cascade between the levels (electron jumps through levels)

Molecules: adding degrees of freedom

Order of magnitudes

Transitions	Energy (eV)	Temperature (K)	λ
Electronic	4 eV	40,000 K	visible and UV
Vibrational	0.1 eV	1,000 K	NIR/MIR (\sim 2-20 μ m)
Rotational	< 0.01 eV	< 100 K	mm/submm

RADIATIVE EXCITATION

COLLISIONAL EXCITATION

RADIATIVE DE-EXCITATION (spontaneous)

(a) Emission line

Frequency ν

COLLISIONAL DE-EXCITATION

Collisions: a sketch

< 22 >

• Radiative processes:

collisional

de-excitation

energy

- Radiation by atoms/molecules/ions excited by collisions transfer part of
 - the kinetic energy into radiation

collisional

excitation

radiative

de-excitation

• electronic transitions \rightarrow Vis/UV (Hubble Space Telescope)

- ► H₂ + atoms observed directly
- large oscillator strengths¹, minor species can be detected
- ▶ vibrational transitions → IR (Spitzer, Herschel)
 - both gas and solids observed
 - ices, silicates, oxides, PAH mid-far IR
 - molecules without permanent dipole moment (e.g. H⁺₃, CH₄, CO₂)
 - moderate oscillator strengths
- rotational transitions \rightarrow sub-mm (Herschel, ALMA)
 - bulk of interstellar molecules
 - high sensitivity to low abundances (down to $10^{-11} x_H$)

Transitions	Energy (eV)	Temperature (K)	λ
Electronic	4 eV	40,000 K	visible and UV
Vibrational	0.1 eV	1,000 K	NIR/MIR (\sim 2-20 μ m)
Rotational	< 0.01 eV	< 100 K	mm/submm

158 micron [CII] transition

158 micron [CII] transition

COBE FIRAS 158 μ m C⁺ Line Intensity

Interstellar chemistry

Astrochemistry

- Chemistry in the ISM is better known as "Astrochemistry"
- Tielens: "Astrochemistry describes a cosmic dance of the elements in which atoms are constantly reshuffled from one species to another"
- The "dance" is driven by different energy sources (including photons and cosmic rays)

- It is to study the chemical processes which destroy and form atoms/ molecules relevant to understand the ISM
- Gas phase chemistry

Gas-phase chemical reactions

Bond Formation Processes

Typical rate coefficient (cm³ s⁻¹)

 $10^{-17} - 10^{-14}$

 $\sim 10^{-17}$

 $\sim 10^{-9}$

Radiative association Grain surface formation Associative detachment

Bond Destruction Processes

Photodissociation Dissociative recombination Collisional dissociation $\begin{array}{ll} XY + h\nu \to X + Y & 10^{-10} - 10^{-8} \ s^{-1} \\ XY^+ + e \to X + Y & 10^{-7} - 10^{-6} \\ XY + M \to X + Y + M & \sim 10^{-26} \ cm^6 \ s^{-1} \end{array}$

 $X + Y \rightarrow XY + hv$

 $X + Y: g \rightarrow XY + g$

 $X^- + Y \rightarrow XY + e$

Bond Rearrangement Processes

Ion-molecule exchange Charge-transfer Neutral-neutral $\begin{array}{ll} X^+ + YZ \to XY^+ + Z & 10^{-9} - 10^{-8} \\ X^+ + YZ \to X + YZ^+ & 10^{-9} \\ X + YZ \to XY + Z & 10^{-11} - 10^{-9} \end{array}$

Photochemistry

- Photons permeate the ISM (diffuse)
- Are then the dominant destruction agent for small molecules
- Typical bonding energies are 5-10 eV (~3000 Angstrom)

Photochemistry

1. $A + B \rightarrow P$ (two-body reactions)

2. A + photon \rightarrow P (photo-reactions)

3. $A + B + C \rightarrow P$ (three-body reactions)

$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B} \qquad (1) \quad \text{units of } k(T): \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$$
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A} \qquad (2) \quad \text{units of } k(T): \ \mathrm{s}^{-1}$$
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B}n_{\rm C} \qquad (3) \quad \text{units of } k(T): \ \mathrm{cm}^6 \ \mathrm{s}^{-1}$$

Different mechanisms

- Direct photodissociation (H₂O)
- Predissociation (CO, N₂)
- Two-step dissociation (H₂)
- Continuum absorption

Intensity Cross-section

$$k_{\rm pd}^{\rm cont} = \int_{\lambda_{\rm H}}^{\lambda_{\rm d}} \sigma(\lambda) I(\lambda) d\lambda \ {\rm s}^{-1}$$

• Line absorption for one line (one needs to sum over all the transitions)

Neutral-neutral

$A + B \leftrightarrow C + D + \Delta E$

Quite often reactions with barrier

A small barrier of 1000 K makes a reactions prohibitive at 100 K typical for diffuse ISM

These reactions are important when the gas is warm: Stellar ejecta Hot cores Dense PDR Shocks

Ion-neutral reactions

Exothermic ion-neutral reactions are very rapid Strong polarization-induced interaction potential

 $\mu_D^{\rm induced} = \alpha E$

$$U(r) = -\frac{\alpha Z^2 e^2}{2r^4}$$
 Long-range attractive potential

Polarizability indicates how easily the molecule electrons can be displaced by an electric field.

Ion-neutral reactions

- 1. Most of the times independent on T
- 2. Highly exothermic
- 3. Rate coefficient of the order of 10⁻⁹ cm³ s⁻¹
- 4. A small amount of ionization can be very effective in driving interstellar chemistry
- 5. Proton transfer reactions from one species to another are of particular relevance

reaction β α γ $H_2 + O \rightarrow OH + H$ 9.0(-12)1.0 4.5(3) $H + OH \rightarrow O + H_2 \qquad 4.2(-12)$ 1.0 3.5(3) $H_2 + OH \rightarrow H_2O + H$ 3.6(-11) 2.1(3) $H + H_2O \rightarrow OH + H_2$ 1.5(-10) 1.0(4) $H+O_2 \rightarrow OH+O$ 3.7(-10) 8.5(3) $\begin{array}{ll} OH + \tilde{O} \rightarrow O_2 + H & 4.0(-10) \\ H_2 + C \rightarrow CH + H & 1.2(-9) \end{array}$ 6.0(2)0.5 1.4(4) $H + CH \rightarrow C + H_2$ 1.2(-9) 2.2(3)0.5 $C^+ + H_2 \rightarrow CH^+ + H$ 9.4(-12) 1.25 4.7(3)

Table 4.4 Neutral-neutral reactions ^a

^{*a*} Reaction rates of the form $k = \alpha (T/300)^{\beta} \exp[-\gamma/kT]$.

Table 4.7 Ion-molecule reactions

reaction	α
$H_2^+ + H_2 \rightarrow H_3^+ + H$	2.1 (-9)
$H_3^+ + O \rightarrow OH^+ + H_2$	8.0(-10)
$H_3^+ + CO \rightarrow HCO^+ + H_2$	1.7 (-9)
$\mathrm{H_3^+} + \mathrm{H_2O} \rightarrow \mathrm{H_3O^+} + \mathrm{H_2}$	5.9 (-9)
$OH^+ + H_2 \rightarrow H_2O^+ + H_2$	1.1 (-9)
$H_2O^+ + H_2 \rightarrow H_3O^+ + H$	6.1 (-10)
$C^+ + OH \rightarrow CO^+ + H$	7.7 (-10)
$C^+ + H_2O \rightarrow HCO^+ + H$	2.7 (-9)
$\rm CO^+ + H_2 \rightarrow \rm HCO^+ + \rm H$	2.0 (-9)
$\mathrm{He^{+}} + \mathrm{CO} \rightarrow \mathrm{C^{+}} + \mathrm{O} + \mathrm{He}$	1.6 (-9)
$\mathrm{He^{+}} + \mathrm{O_{2}} \rightarrow \mathrm{O^{+}} + \mathrm{O} + \mathrm{He}$	1.0 (-9)
$He^+ + H_2O \rightarrow OH^+ + H + He$	3.7 (-10)
$\mathrm{He^{+} + H_{2}O \rightarrow H_{2}O^{+} + He}$	7.0(-11)
$\mathrm{He^{+}} + \mathrm{OH} \rightarrow \mathrm{O^{+}} + \mathrm{H} + \mathrm{He}$	1.1 (-9)

^{*a*} Reaction rates are of the form $k = \alpha$.

$A^+ + B \to A + B^+$

Important in setting the ionization balance

Pretty fast (10⁻⁹ cm³ s⁻¹)

O + H⁺ particular relevant: drives interstellar chemistry making oxygen a reactive species

Dissociative recombination

Involves capture of an electron by an ion to form a neutral in an

excited electronic state that can dissociate

$$XY^+ + e^- \rightarrow X + Y$$

Electron excites transition of stable AB⁺ ion to a repulsive state of AB molecule which crosses the energy curve of the ion AB⁺.

Fast: typical rate
 coefficients 10⁻⁷ cm³ s⁻¹

Table 4.11 *Electron recombination reactions*^a

reaction	α	β
$OH^+ + e \rightarrow O + H$	3.8 (-8)	-0.5
$CO^+ + e \rightarrow C + O$	2.0(-7)	-0.5
$H_2O^+ + e \rightarrow O + H + H$	2.0(-7)	-0.5
$H_2O^+ + e \rightarrow OH + H$	6.3 (-8)	-0.5
$H_2O^+ + e \rightarrow O + H_2$	3.3 (-8)	-0.5
$H_3O^+ + e \rightarrow H_2O + H$	3.3 (-7)	-0.3
$H_3O^+ + e \rightarrow OH + H + H$	4.8 (-7)	-0.3
$H_3O^+ + e \rightarrow OH + H_2$	1.8 (-7)	-0.3
$H_3^+ + e \rightarrow H_2 + H$	3.8 (-8)	-0.45
$H_3^+ + e \rightarrow H + H + H$	3.8(-8)	-0.45
$HCO^{+} + e \rightarrow CO + H$	1.1(-7)	-1.0
$CH^+ + e \rightarrow C + H$	1.5 (-7)	-0.4
$CH_2^+ + e \rightarrow CH + H$	1.4 (-7)	-0.55
$CH_2^{+} + e \rightarrow C + H + H$	4.0(-7)	-0.6
$CH_2^{+} + e \rightarrow C + H_2$	1.0(-7)	-0.55
$CH_3^{+} + e \rightarrow CH_2 + H$	7.8 (–8)	-0.5
$CH_{3}^{+} + e \rightarrow CH + H + H$	2.0(-7)	-0.4
$CH_3^+ + e \rightarrow CH + H_2$	2.0 (– 7)	-0.5

^{*a*} Electron recombination rate coefficients are given as $k_{\rm rec} = \alpha (T/300)^{\beta}$.

Other reactions

- Collisional dissociation/association: not very important in astrophysics
- In dense gas near stellar photospheres
- Or in dense circumstellar disks

A +	$-\mathrm{B}+\mathrm{M}\leftrightarrow$	AB + M
	$A + B^{-} \rightarrow$	AB + e

• Associative detachment: neutral product stabilized through electron emission: important in early Universe

For a quick and understandable introduction to the chemistry of the ISM:

Tielens: The physics and chemistry of the ISM

For a deeper view see Introduction to Astrochemistry lectures @ stf.astropoyo.cl

Yamamoto: Introduction to Astrochemistry

BASICS TEXTBOOKS

Physics of Atoms and Molecules (Bransden&Joachain)

Physical Chemistry (McQuarrie & Simon)

Molecular Quantum Mechanics (Atkins & Friedman)