INTERSTELLAR MEDIUM

- Stefano Bovino -

Chemistry

Astrochemistry

- Chemistry in the ISM is better known as "Astrochemistry"
- Tielens: "Astrochemistry describes a cosmic dance of the elements in which atoms are constantly reshuffled from one species to another"
- The "dance" is driven by different energy sources (including photons and cosmic rays)

- Is to study the chemical processes which destroy and form atoms/
 - molecules relevant to understand the ISM
- Gas phase chemistry
- Chemistry on dust grains

Gas-phase chemical reactions

Bond Formation Processes

Typical rate coefficient (cm³ s⁻¹)

 $10^{-17} - 10^{-14}$

 $\sim 10^{-17}$

 $\sim 10^{-9}$

Radiative association Grain surface formation Associative detachment

Bond Destruction Processes

Photodissociation Dissociative recombination Collisional dissociation $\begin{array}{ll} XY + h\nu \to X + Y & 10^{-10} - 10^{-8} \ s^{-1} \\ XY^+ + e \to X + Y & 10^{-7} - 10^{-6} \\ XY + M \to X + Y + M & \sim 10^{-26} \ cm^6 \ s^{-1} \end{array}$

 $X + Y \rightarrow XY + hv$

 $X + Y: g \rightarrow XY + g$

 $X^- + Y \rightarrow XY + e$

Bond Rearrangement Processes

Ion-molecule exchange Charge-transfer Neutral-neutral $\begin{array}{ll} X^+ + YZ \to XY^+ + Z & 10^{-9} - 10^{-8} \\ X^+ + YZ \to X + YZ^+ & 10^{-9} \\ X + YZ \to XY + Z & 10^{-11} - 10^{-9} \end{array}$

Gas-phase chemical reactions

- A + B → P (two-body reactions)
 A + photon → P (photo-reactions)
 A + B + C → P (three-body reactions)
 - $\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B} \qquad (1) \quad \text{units of } k(T): \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$ $\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A} \qquad (2) \quad \text{units of } k(T): \ \mathrm{s}^{-1}$ $\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B}n_{\rm C} \qquad (3) \quad \text{units of } k(T): \ \mathrm{cm}^6 \ \mathrm{s}^{-1}$

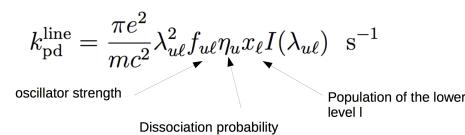
Photochemistry

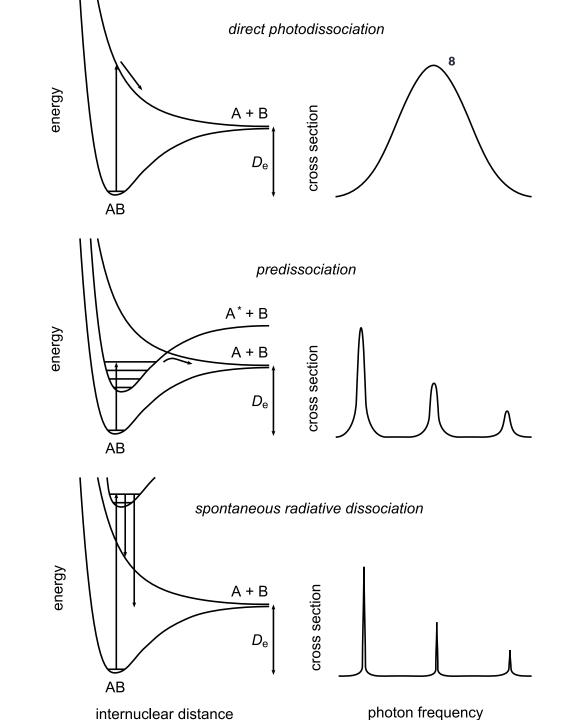
- Photons permeate the ISM (diffuse)
- Are then the dominant destruction agent for small molecules
- Typical bonding energies are 5-10 eV (~3000 Angstrom)

Photochemistry

- 1. $A + B \rightarrow P$ (two-body reactions)
- 2. $A + photon \rightarrow P$ (photo-reactions) 3. $A + B + C \rightarrow P$ (three-body reactions)

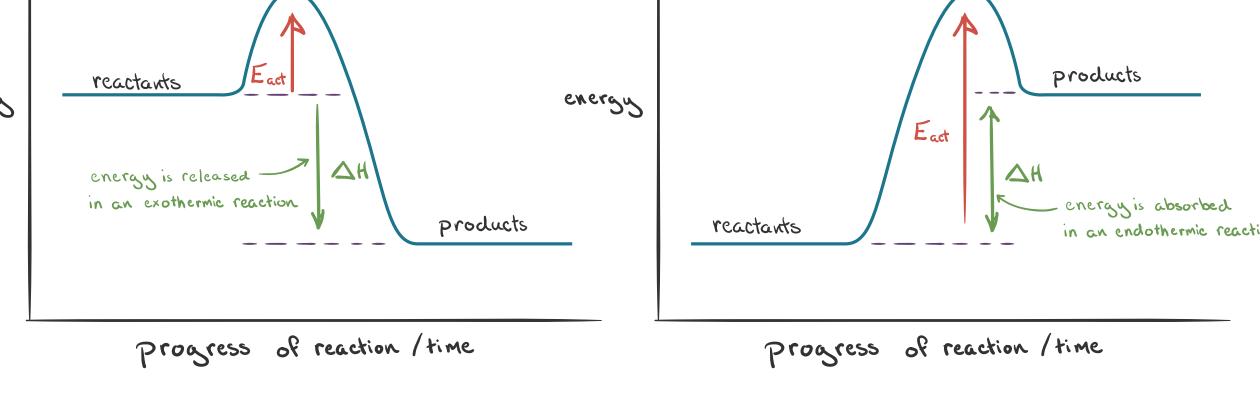
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B} \qquad (1) \quad \text{units of } k(T): \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$$
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A} \qquad (2) \quad \text{units of } k(T): \ \mathrm{s}^{-1}$$
$$\frac{dn_{\rm P}}{dt} = k(T)n_{\rm A}n_{\rm B}n_{\rm C} \qquad (3) \quad \text{units of } k(T): \ \mathrm{cm}^6 \ \mathrm{s}^{-1}$$


Different mechanisms


- Direct photodissociation (H₂O)
- Predissociation (CO, N₂)
- Two-step dissociation (H₂)
- Continuum absorption

Cross-section

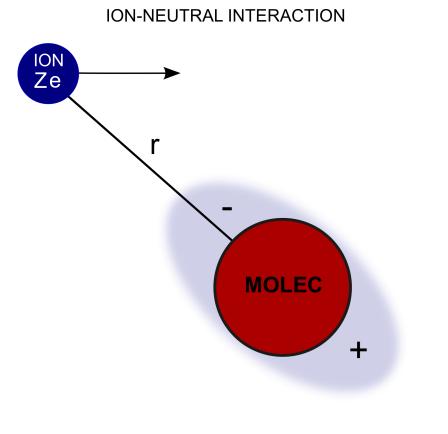
$$k_{\rm pd}^{\rm cont} = \int_{\lambda_{\rm H}}^{\lambda_{\rm d}} \sigma(\lambda) I(\lambda) d\lambda \ {\rm s}^{-1}$$


• Line absorption for one line (one needs to sum over all the transitions)

transition state transition state Eact reactants energy 53

 $A + B \leftrightarrow C + D + \Delta E$

Quite often reactions with barrier


A small barrier of 1000 K makes a reactions prohibitive at 100 K typical for diffuse ISM

These reactions are important when the gas is warm: Stellar ejecta Hot cores Dense PDR Shocks

Ion-neutral reactions

Exothermic ion-neutral reactions are very rapid Strong polarization-induced interaction potential

 $\mu_D^{\rm induced} = \alpha E$

$$U(r) = -\frac{\alpha Z^2 e^2}{2r^4}$$
 Long-range attractive potential

Polarizability indicates how easily the molecule electrons can be displaced by an electric field.

Ion-neutral reactions

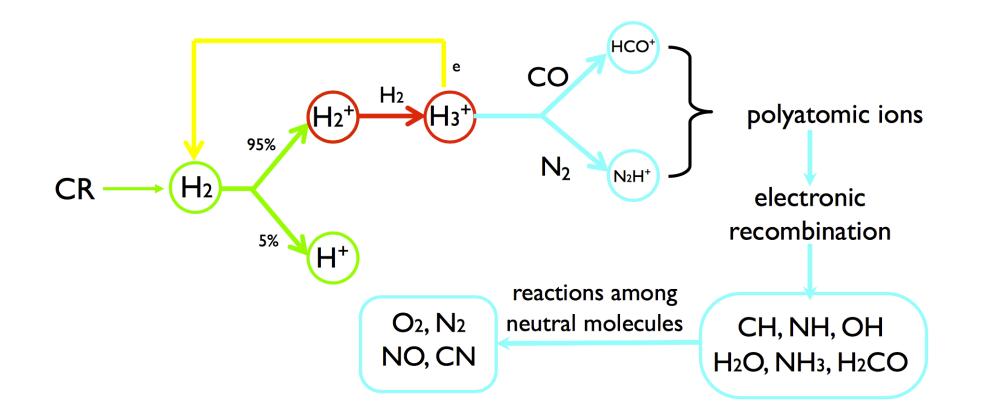
- 1. Most of the times independent on T
- 2. Highly exothermic
- 3. Rate coefficient of the order of 10⁻⁹ cm³ s⁻¹
- 4. A small amount of ionization can be very effective in driving interstellar chemistry
- 5. Proton transfer reactions from one species to another are of particular relevance

reaction β α γ $H_2 + O \rightarrow OH + H$ 9.0(-12)1.0 4.5(3) $H + OH \rightarrow O + H_2 \qquad 4.2(-12)$ 1.0 3.5(3) $H_2 + OH \rightarrow H_2O + H$ 3.6(-11) 2.1(3) $H + H_2O \rightarrow OH + H_2$ 1.5(-10) 1.0(4) $H+O_2 \rightarrow OH+O$ 3.7(-10) 8.5(3) $\begin{array}{ll} OH + \tilde{O} \rightarrow O_2 + H & 4.0(-10) \\ H_2 + C \rightarrow CH + H & 1.2(-9) \end{array}$ 6.0(2)0.5 1.4(4) $H + CH \rightarrow C + H_2$ 1.2(-9) 0.5 2.2(3) $C^+ + H_2 \rightarrow CH^+ + H$ 9.4(-12) 1.25 4.7(3)

Table 4.4 Neutral-neutral reactions ^a

^{*a*} Reaction rates of the form $k = \alpha (T/300)^{\beta} \exp[-\gamma/kT]$.

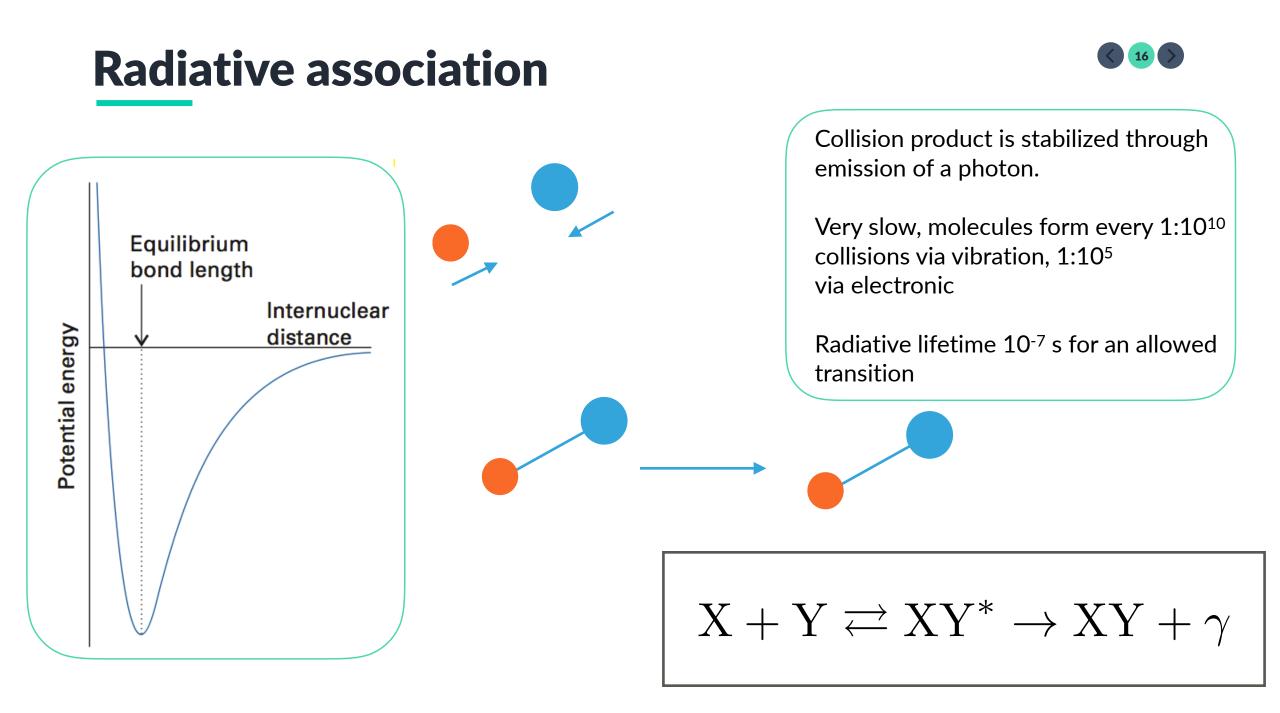
Table 4.7 Ion-molecule reactions


reaction	α
$H_2^+ + H_2 \rightarrow H_3^+ + H$	2.1 (-9)
$\tilde{\mathrm{H}}_{3}^{+} + \tilde{\mathrm{O}} \rightarrow \mathrm{OH}^{+} + \mathrm{H}_{2}$	8.0(-10)
$H_3^+ + CO \rightarrow HCO^+ + H_2$	1.7 (-9)
$H_3^+ + H_2O \rightarrow H_3O^+ + H_2$	5.9 (-9)
$OH^+ + H_2 \rightarrow H_2O^+ + H_2$	1.1 (-9)
$H_2O^+ + H_2^- \rightarrow H_3O^+ + H$	6.1 (-10)
$\tilde{C}^+ + O\tilde{H} \rightarrow CO^+ + H$	7.7 (-10)
$C^+ + H_2O \rightarrow HCO^+ + H$	2.7 (-9)
$\rm CO^+ + \tilde{H}_2 \rightarrow \rm HCO^+ + \rm H$	2.0 (-9)
$\text{He}^+ + \text{CO} \rightarrow \text{C}^+ + \text{O} + \text{He}$	1.6 (-9)
$\mathrm{He^{+}} + \mathrm{O_{2}} \rightarrow \mathrm{O^{+}} + \mathrm{O} + \mathrm{He}$	1.0 (-9)
$He^+ + H_2O \rightarrow OH^+ + H + He$	3.7 (-10)
$He^+ + H_2O \rightarrow H_2O^+ + He$	7.0(-11)
$\text{He}^+ + \tilde{\text{OH}} \rightarrow \text{O}^+ + \text{H} + \text{He}$	1.1 (-9)

^{*a*} Reaction rates are of the form $k = \alpha$.

Example: $H_2^+ + H_2 \rightarrow H_3^+ + H$

• a "cornerstone" reaction in molecular clouds: H₂ ionized by photons, CRs, X-rays, reacts with ambient H₂



$A^+ + B \to A + B^+$

Important in setting the ionization balance

Pretty fast (10-9 cm³ s⁻¹)

O + H⁺ particular relevant: drives interstellar chemistry making oxygen a reactive species

Dissociative recombination

• Involves capture of an electron by an ion to form a neutral in an

excited electronic state that can dissociate

$$XY^+ + e^- \rightarrow X + Y$$

Electron excites transition of stable AB⁺ ion to a repulsive state of AB molecule which crosses the energy curve of the ion AB⁺.

Fast: typical rate
 coefficients 10⁻⁷ cm³ s⁻¹

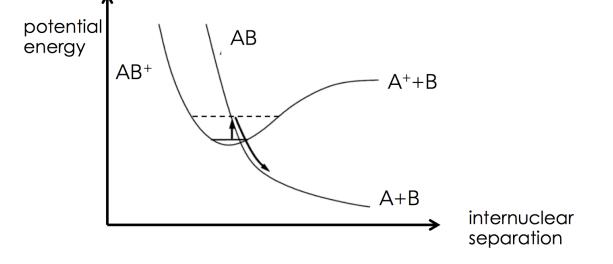


Table 4.11 Electron recombination reactions^a

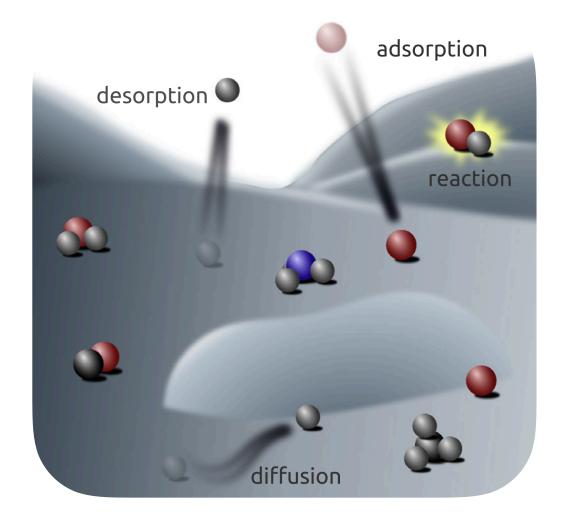
reaction	α	β
$OH^+ + e \rightarrow O + H$	3.8 (-8)	-0.5
$CO^+ + e \rightarrow C + O$	2.0(-7)	-0.5
$H_2O^+ + e \rightarrow O + H + H$	2.0(-7)	-0.5
$H_2^-O^+ + e \rightarrow OH + H$	6.3 (-8)	-0.5
$H_2^{-}O^+ + e \rightarrow O + H_2$	3.3 (-8)	-0.5
$H_3O^+ + e \rightarrow H_2O + H$	3.3 (-7)	-0.3
$H_3O^+ + e \rightarrow OH + H + H$	4.8 (-7)	-0.3
$H_3O^+ + e \rightarrow OH + H_2$	1.8 (-7)	-0.3
$H_3^+ + e \rightarrow H_2 + H$	3.8(-8)	-0.45
$H_3^{+} + e \rightarrow H + H + H$	3.8 (-8)	-0.45
$HCO^{+} + e \rightarrow CO + H$	1.1 (-7)	-1.0
$CH^+ + e \rightarrow C + H$	1.5 (-7)	-0.4
$CH_2^+ + e \rightarrow CH + H$	1.4 (-7)	-0.55
$CH_2^{\tilde{+}} + e \rightarrow C + H + H$	4.0 (-7)	-0.6
$CH_2^{+} + e \rightarrow C + H_2$	1.0 (-7)	-0.55
$CH_3^{+} + e \rightarrow CH_2 + H$	7.8 (–8)	-0.5
$CH_3^{+} + e \rightarrow CH^{+} + H + H$	2.0(-7)	-0.4
$CH_3^3 + e \rightarrow CH + H_2$	2.0 (-7)	-0.5

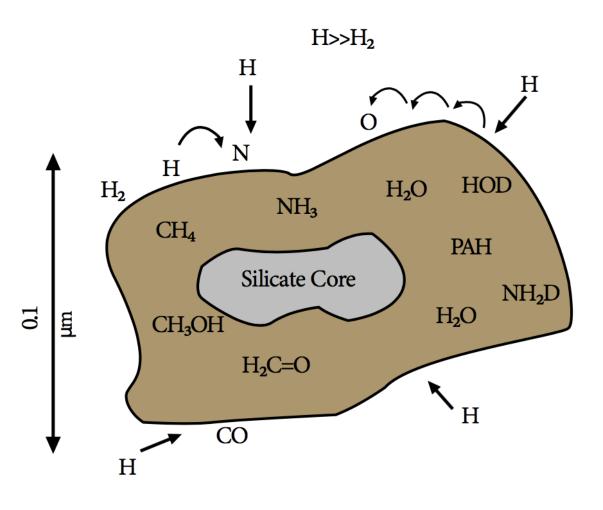
^{*a*} Electron recombination rate coefficients are given as $k_{\rm rec} = \alpha (T/300)^{\beta}$.

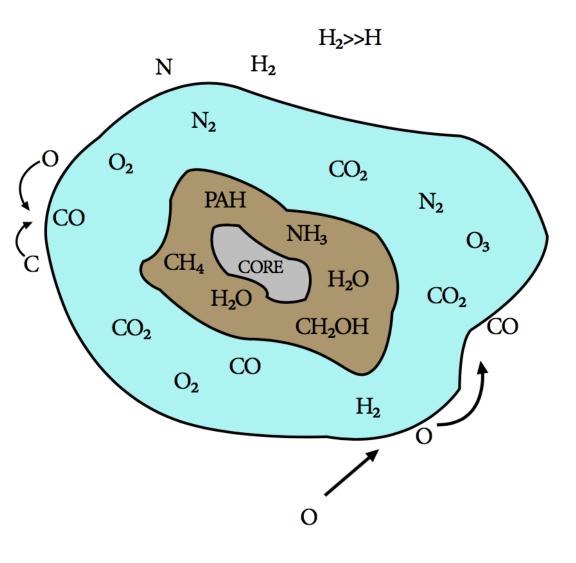
Other reactions

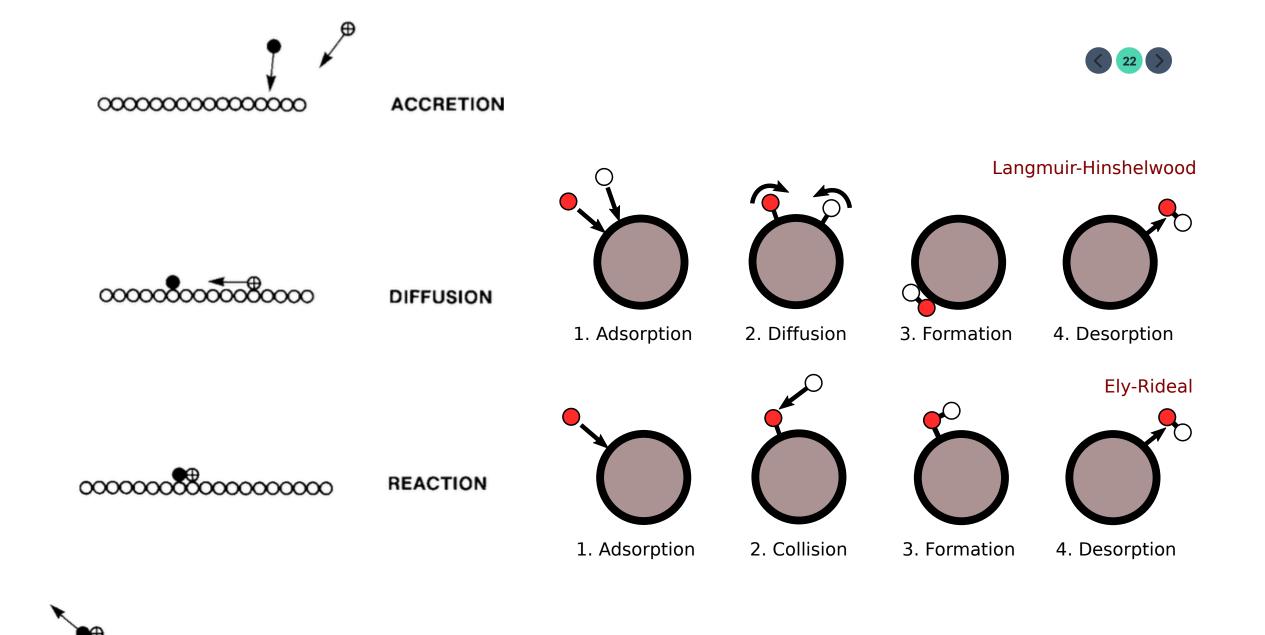
- Collisional dissociation/association: not very important in astrophysics
- In dense gas near stellar photospheres
- Or in dense circumstellar disks

$A + B + M \leftrightarrow AB + M$
$A + B^- \rightarrow AB + e$

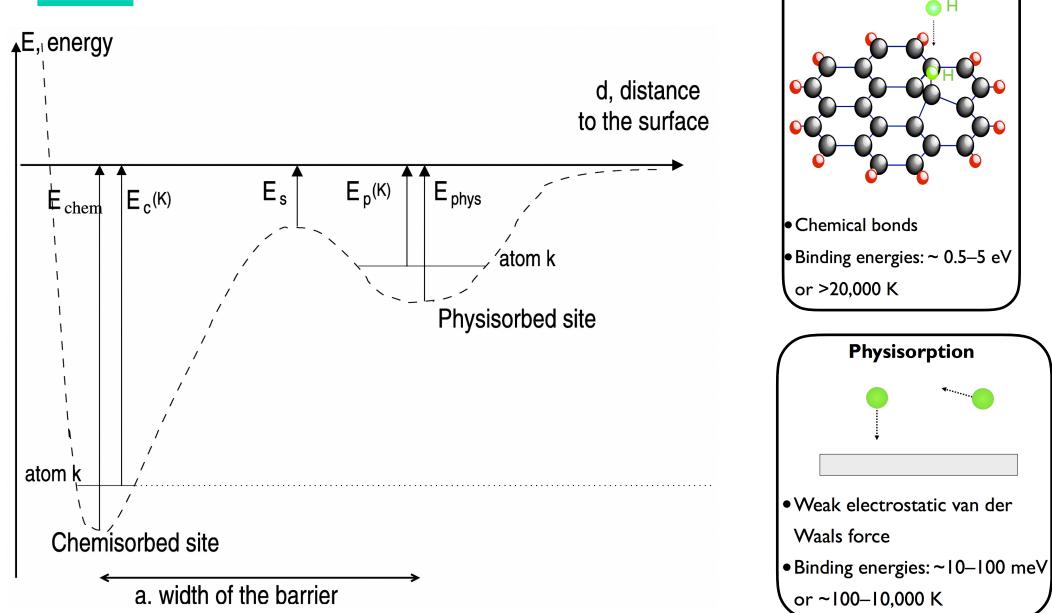

Associative detachment: neutral product stabilized through


electron emission: important in early Universe


Grain-surface chemistry in pills



- Grains provide a surface on which accrete species
- These can meet and react



Binding energy

23

Chemisorption

Interstellar grains are porous

They are not regular in the shape: valleys and hills

Valleys (deep sites): chemisorbed sites Hills (peak sites): physisorbed sites

Then we have also saddle points which represents barriers to the motion of the adsorbate across the surface

Chemisorbed sites are quickly covered with ice in cold environments: then physisorption is the only process

For a quick and understandable introduction to the chemistry of the ISM:

Tielens: The physics and chemistry of the ISM

For a deeper view see Introduction to Astrochemistry lectures @ stf.astropoyo.cl

Yamamoto: Introduction to Astrochemistry