INTERSTELLAR MEDIUM

- Stefano Bovino -

Thermal processes in the ISM

ISM phases

$$A_v = \frac{N_{\rm H}}{2 \times 10^{21}} \rm mag \, cm^{-2}$$

N_H (cm⁻²)

 Table 1
 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}_{H_{2}} > 0.1 f^{n}_{C^{+}} > 0.5$	$f^{n}_{C^{+}} < 0.5 f^{n}_{CO} < 0.9$	$f^{n}_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5-10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30–100	30–100	15–50?	10–50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

Component	Temperature (K)	Density (cm^{-3})	Fractional ionization
Molecular gas	10 - 20	$> 10^{2}$	$< 10^{-6}$
Cold neutral medium (CNM)	50 - 100	20 - 50	$\sim 10^{-4}$
Warm neutral medium (WNM)	6000 - 10000	0.2 – 0.5	~ 0.1
Warm ionized medium (WIM)	~ 8000	0.2 – 0.5	1.0
Hot ionized medium (HIM)	$\sim 10^{6}$	$\sim 10^{-2}$	1.0

Adapted from Ferriére (2001), Caselli et al. (1998), Wolfire et al. (2003), and Jenkins (2013).

Thermal and pressure equilibrium produced when heating and cooling mechanisms in a region equilibrate at a particular temperature.

Phases are in equilibrium unless perturbed (by for instance radiation)

$$\mathscr{L} = n^2 \Lambda - n\Gamma$$

General concepts (1)

- We mean the transfer of kinetic energy to or from atoms, molecules and ions of the interstellar gas
- The principal heating is the removal of an electron from an interstellar species (gas or grain) by energetic particles or photons
- The heating is produced by the thermalization of these suprathermal electrons by elastic collisions with the gas

General concepts (2)

- Collisions force a Maxwellian distribution of velocities in the ISM
- Kinetic energy most useful characterization of the "temperature"
- Collisional de-excitation can transfer energy to the gas and heat it if the medium is dense (is less important in low-dense medium)

Main heating terms

- Photoelectric heating
- Photoheating
- X-ray and CRs heating
- Gas-grain thermal exchange (heating/cooling)
- Chemical heating
- Hydrodynamical heating

Hydrodynamical heating (macroscopic)

< 7 >

- Gas can couple to macroscopic fluid motion
 - Turbulence (shock waves)
 - Viscous heating (e.g. ambipolar diffusion)
 - Gravitational (compressional) heating
 - Mechanical heating produced by stellar winds/SNe

explosion

- Most important heating process in the neutral ISM
 - Cold diffuse ISM
 - PAH and small dust grains
 - FUV photons (6-13.6 eV) absorbed by a grain will create energetic (several eV) electrons
 - Electrons then diffuse in the grain, lose energy through collisions
 - If they reach the surface with enough E they can escape

- Energy should overcome the work function W of the grain
 - In solid-state physics work function is the thermodynamic work or energy required to remove an electron from a solid
- And the Coulomb potential (if grains are charged) γ

- The ejected electrons (photoelectrons) bring energy of a few eV
 - Not enough to ionize or dissociate molecules
 - All the energy goes into heating

$$\Gamma_{\text{PE}} = \mathcal{E}_{\text{GRAIN}} n_{\text{dust}} \sigma_{\text{dust}}^{\text{abs}} \chi$$
$$\epsilon_{\text{grain}} \sim \gamma \left(\frac{h\nu - W - \phi_{\text{c}}}{h\nu} \right)$$

$$\Gamma_{\rm PE} = \varepsilon_{\rm GRAIN} n_{\rm dust} \sigma_{\rm dust}^{\rm abs} \chi$$

$$\epsilon_{\text{grain}} \sim Y\left(\frac{h\nu - W - \phi_{\text{c}}}{h\nu}\right)$$

$$\begin{array}{ll} W & - \mbox{ work function of bulk dust material} \\ Y & - \mbox{ electron yield} \\ \varepsilon_{\rm GRAIN} & - \mbox{ efficiency of heating} \\ \Phi_C & - \mbox{ Coulomb potential of the dust grain} \\ \sigma_{\rm abs} & - \mbox{ dust absorption cross section} \end{array}$$

photon energy density [erg/cm³]

$$\chi = \frac{\int_{912}^{2050} \lambda u_{\lambda} d\lambda}{\int_{912}^{2050} \lambda u_{\lambda}^{Draine} d\lambda}$$

- The strength of the radiation field
- The size distribution of the dust grains
- Yield: measures how many electrons escapes per photon
- The charge of the dust grains (Coulomb potential)

Photoelectric heating: Yield

For small grains and energetic photons, more than 1 electron can be ejected.

PE yield for uncharged carbonaceous grains of various sizes for different absorbed photon energies.

Photoelectric heating: Recombination

$$GR^{+(n)} + \gamma \rightarrow GR^{+(n+1)} + e^{-}$$

$$GR^{+(n)} + e^{-} \rightarrow GR^{+(n-1)}$$

$$GR^{+(n)} + A^{+} \rightarrow GR^{+(n+1)} + A$$

$$\Lambda_{rec} = 3.49 \times 10^{-30} T^{0.944} (\chi T^{1/2} / n_e)^{0.735T^{-0.068}} n_e n_{\rm H} \, {\rm erg \, s^{-1} \, cm^{-3}}.$$

106

CNM, G0=1, T=100, n~25 cm⁻³, $x_e = n_e/n_H = 3 \times 10^{-4}$ WIM, G0=1, T=8000, n~0.25 cm⁻³, $x_e = n_e/n_H = 10^{-2}$

Dense regions PE completely negligible, UV do not penetrate G0 ~ 0

PE dominates the medium PE balanced by RC

Photoheating

- Ionizations of atoms induced by FUV radiation liberates electrons
- Energy of these photoelectrons is

$$(h\nu - E_0)$$

$$A^{+n}$$
 + $h\nu \rightarrow A^{+(n+1)} + e^{-1}$
 AB + $h\nu \rightarrow AB^{+} + e^{-1}$

Photoheating

- It is mainly caused by
 - Atoms photoionization in HII regions (E > 13.6 eV)
 - Photoionization of large molecules and small dust grains in HI regions (E < 13.6 eV), carbon (IP: 11.2 eV, but negligible)
 - A different mechanism: molecules photodissociations in

molecular regions $AB + h\nu \rightarrow A + B$

$$H_{ph}[\text{erg s}^{-1}] = \frac{4\pi}{h} \int_{E_0}^{\infty} \frac{J(E)\sigma(E)}{E} (E - E_0)\eta(E)e^{-\tau}dE$$

 $\eta(E)$ is an efficiency factor that determines the amount of energy released into the gas.

The effective photoheating is

$$\Gamma_{ph} = H_{ph} n_X \text{ erg s}^{-1} \text{cm}^{-3}.$$

Photoheating (H₂ case)

- Fragments carry away some of the photon energy as kinetic energy
- Collisional de-excitation of re-formed or in general excited H₂ molecules can deexcited and additionally heat the gas

Photoheating (H₂ case)

- Lyman-Werner bands (11.2-13.51 eV)
- 0.4 eV \rightarrow 6.4 \times 10⁻¹³ erg per dissociation (kinetic energy)
- $\blacktriangleright~2.2~eV \rightarrow 3.5 \times 10^{-12}$ erg due to vibrational de-excitation

$$\begin{split} & \Gamma_{pd_1}^{UV} = 9R_{pd}(H_2) \{ 3.5 \times 10^{-12} \left[1 + n_{cr}/n \right]^{-1} \} n_{H_2} \\ & \Gamma_{pd_2}^{UV} = 6.4 \times 10^{-13} R_{pd}(H_2) \eta n_{H_2} \\ & \Gamma_{pd}^{tot} = \Gamma_{pd_1}^{UV} + \Gamma_{pd_2}^{UV} \rightarrow \text{total heating} \end{split}$$

• $\eta = 0.1$ (only 10% of the molecules dissociate)

- Hot gas in the ISM (T > 10^{6} K)
 - Its existence suggested by Spitzer as early as 1956
 - 1968: Bowyer diffuse emission in soft X-rays (< 1 keV)
 - 1974: Jenkins & Meloy and York observed O VI features (COPERNICUS satellite), establishment of the hot ISM phase
 - Inoue, Schnopper, Sanders interstellar X-ray lines OVII, OVIII

- This hot gas comes from SNRs and bubbles
- Shock-heated by stellar winds and blast waves by novae and SNe
- T > 10^{5.5} K and n ~ 0.004 cm⁻³
- Most of the ionization in this gas comes from collisions (O VI needs 114 eV)
- The suprathermal electrons thermalize very rapidly
- These electrons induce other ionization

• Multielectrons atoms have multiple shells

- i.e. orbits
- Correspond to a given principle

quantum number n

• n = 1, shell K, n=2 shell L, n=3, shell M

X-ray fluorescence

 When illuminated by X-ray photons atom produce X-ray absorption spectrum but not absorption lines

• The hole left in the K layer after an

electron has been ejected can be filled by

an electron from an outer layer

• This produce emission of a X-ray photon

• The primary photoelectrons emitted from K shells thermalize with

the surrounding gas and heat the gas

• This photoelectrons can cause secondary ionization and liberate other electrons

• The secondary electrons represent an extra heating

• Heating by X-ray radiation is not efficient for the cold atomic

medium (relatively high column density)

- Very efficient for the warm, less dense atomic medium
- Completely neglected in MCs where soft X-rays cannot penetrate
- It is very efficient near to X-ray sources, SNRs and pre main-

sequence stars

 $N_{\rm w}\,({\rm cm}^{-2})$

Cosmic-rays

• Low energy CRs (~1-100 MeV) are most efficient in ionizing and

heating the gas

- Every CR process releases ~ 35 eV of energy
 - Heating
 - Secondary ionization

$$\Gamma^{i}_{CR} = Qk_{i}^{cr}n_{i} \rightarrow \Gamma^{i}_{CR} = Q\alpha_{i}\xi_{cr}n_{i}$$

- great uncertainty in the fraction of heating
- it varies depending on the environment (if neutral or ionized)
 - Q = 7.7 eV at 2 MeV \rightarrow Glassgold & Langer 1973
 - Q = 6.6 eV at 2 MeV \rightarrow Cravens & Dalgarno 1978
 - ▶ $Q = 6 35 \text{ eV} \rightarrow \text{Shull & van Steenberg 1985}$
 - $Q = 7.0 \text{ eV} \rightarrow \text{Stahler \& Palla 2004}$
 - $Q = 20 \text{ eV} \rightarrow \text{Goldsmith } 2001$
 - ► $Q = 13 \text{ eV} \rightarrow \text{Glassgold}$, Galli, & Padovani 2012

• uncertainty also on ξ_{cr}

• $\xi_{cr} = 1 - 2 \times 10^{-17} \text{ s}^{-1} \rightarrow \text{a kind of standard}$

Photoheating
$$\Gamma_{ph} = H_{ph}n_X \text{ erg s}^{-1}\text{cm}^{-3}.$$

$$\label{eq:Gamma} \begin{array}{l} \mbox{Cosmic ray heating} \\ \Gamma_{cr}\sim 3.2\times 10^{-28} \frac{\zeta_{\rm H}}{10^{-17}} \textit{n}_{\rm H} \ \mbox{erg s}^{-1} \mbox{cm}^{-3} \end{array}$$

32

In the ISM dust and

gas are not in

thermodynamical

equilibrium

• Quite often different

temperatures

 $\Gamma_{em} = \Lambda_{g \to d} + \Gamma_{CMB} + \Gamma_{abs}$

- Mean flux of kinetic energy from gas which strikes the grain is
 E = 2kT for a Maxwellian distribution
- Particles which struck the grain leave the grain with a different mean kinetic energy @ a temperature T_2 which is intermediate between T_d and T.

Gas-grain: accommodation coefficient

34 >

every collision gives to the gas a mean energy:

$$E = 2\alpha k(T_d - T_g) \longrightarrow \left[\alpha = \frac{T_2 - T_g}{T_d - T_g} \right]$$

how efficiently energy is shared between the dust and the gas

Accommodation coefficient of unity corresponds to a bouncing particle that has completely thermalized and leaves with $2kT_d$

Gas-grain: heating rate

$$\Gamma_{gas,grains} \simeq n_{\rm H} n_d \sigma_d \left(\frac{8kT}{\pi m_{\rm H}}\right)^{1/2} \alpha 2k(T_d - T) \,{\rm erg \, s^{-1} \, cm^{-3}}$$

 $\tau_C = n_{\rm H} n_d \sigma_d v_{th}$

it depends on

- nature of dust grains
- nature of colliders
- T_g and T_d

In literature

- $\alpha = 0.3$ fully molecular gas⁴
- $\alpha = 1$ common

Note: if gas warmer than dust (e.g. diffuse ISM or PDRs) this becomes a cooling process

Gas-grain: order of magnitudes analysis

$$n_d \sigma_d \simeq 1.5 \times 10^{-21} n_{\rm H} \ {\rm cm}^{-1}$$

$$\Gamma_{gas,grains} \simeq 1.6 \times 10^{-33} n_{\rm H}^2 T^{1/2} (T_d - T) \,{\rm erg \, s^{-1} \, cm^{-3}},$$

$$\Gamma_{pe} = 10^{-24} \epsilon \chi n_{\rm H} \, \mathrm{erg} \, \mathrm{s}^{-1} \, \mathrm{cm}^{-3},$$

@ 10 K and X = 1
$$\Gamma_{gas, grains}/\Gamma_{pe} = 1.3 \times 10^{-7} n_{\text{H}_2} (T - T_d),$$

Gas-grain collisions are unimportant if the UV field is not very small

- At high densities collisions between atoms/molecules and dust grains are frequent
 - Energy transfer is efficient
- In the neutral diffuse medium: grains always colder than gas
 - Can only cool it
 - Process inefficient because density is low

- Heating of grains by the gas is unimportant in HII regions
 - These regions are dominated by UV radiation
- Diffuse ionized medium is also negligible
 - Because of the low-densities
- SNRs thermal exchange is dominant
 - Gas temperature high and density is larger

- Deep regions of GMCs grains are heated by IR radiation
 - IR radiation penetrates, grain temperature ~ 8 K
 - Grain can heat the gas if the density is large enough

Chemical heating

progress of reaction / time

progress of reaction / time

```
A + B \leftrightarrow C + D + \Delta E
```

Chemical heating

Reaction Progression

The energy can be released as:

- translation energy of the newly formed molecule

- ro-vibrational excitations

Heating occurs via:

- collisional de-excitations
- simple collisions

Chemical heating

$$A + B \xrightarrow{k_i} C + \Delta H$$
$$\Gamma_{chem} = k_i n_A n_B \epsilon_i \Delta H$$

Chemical heating: an example

- most relevant process
- energy distributed as following
 - ► 0.2 eV as kinetic energy
 - 4.2 eV in roto-vibrational state of H₂
 - heating of grain negligible

$$\Gamma^d_{\mathrm{H}_2} = \textit{R}_f(0.2 + 4.2\epsilon)\textit{n}_{tot}\textit{n}_{\mathrm{H}}$$

T = 100 K, $G_0 = 1$, $x_e = 1.2 \times 10^{-4}$

$$T = 8000 \text{ K}, G_0 = 1, x_e = 3 \times 10^{-3}, \xi_{cr} = 2 \times 10^{-16} \text{ s}^{-1}$$

T = 10 K, no FUV/X-rays rad, $x_e = 1 \times 10^{-7}$

ISM phases

$$A_v = \frac{N_{\rm H}}{2 \times 10^{21}} \rm mag \, cm^{-2}$$

N_H (cm⁻²)

 Table 1
 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}_{H_{2}} > 0.1 f^{n}_{C^{+}} > 0.5$	$f^{n}_{C^{+}} < 0.5 f^{n}_{CO} < 0.9$	$f^{n}_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5-10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30–100	30–100	15–50?	10–50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

General concepts (1)

Heating

Main cooling terms

- The radiation observed from the ISM gas traces the primary cooling processes in the ISM
- We have two categories:
 - Radiative processes
 - Some of the inverse heating processes

Main cooling terms

• Collisional excitation: free electron impact knocks a bound electron

to an excited state: it decays, emitting a photon

- Collisional ionization: free electron impact ionizes a formerly bound electron, taking energy from the free electron
- **Recombination**: free electron recombines with an ion: the binding energy and the free electron's kinetic energy are radiated away

Main cooling terms

52 >

• Radiative processes:

collisional

de-excitation

energy

- Radiation by atoms/molecules/ions excited by collisions transfer part of
 - the kinetic energy into radiation

collisional

excitation

radiative

de-excitation

Radiative cooling

- Involves electronic, rotational and vibrational transitions
- It is the process through we observe atoms and molecules

Total cooling rate

Total cooling

$$\Lambda_{\rm 2levels} = n_1 \Delta E_{10} A_{10} \ {\rm erg} \ {\rm cm}^{-3} \ {\rm s}^{-1}$$

Two levels cooling

- 1. Ignore radiation induced processes
- 2. Assume statistical equilibrium
- 3. Optical thin conditions: photon can escape

Multilevels cooling

collider

kinetic

general expression (N levels)

hν

target

Main coolants

• Fine structure line cooling is almost everywhere in the ISM the

dominant physical process

- Efficient cooling by fine structure lines needs
 - High element abundance
 - A fine structure level close to the fundamental level

Main coolants

- In neutral regions CII and OI dominate
 - In the low temperature only upper fine structure of CII (91.2 K), line intensity @ 158 micron.
 - OI first fine-structure level is @ 228 K, WNM
- In ionized regions OII, OIII, NII, NIII, NeII and NeIII
 - Excitation by electron collisions with ions / Lyman alpha (H)

Main coolants

- T > 10⁴ K
 - Lyman series of hydrogen atoms excited by electrons
 - Allowed transitions
 - Electrons abundance decays with temperature
- T < 10⁴ K
 - Other lines, forbidden lines
 - Critical densities ~ 10²-10⁶ cm⁻³
 - Important in WNM and CNM

Main coolants: molecular gas

- The most important: rotational emission lines of CO
- Also the emission line of the CI fine-structure line 23.4 K

Requirements for cooling

- High frequency of collisions
- Amount of exchanged energy less than the thermal (kinetic) energy of the gas
- High probability of energy exchange
- Excitation energy transported via photons
- Photons emitted by the excited atom/ion before the next particle

collision happens + photons leave the gas without any absorption

In the ISM dust and

gas are not in

thermodynamical

equilibrium

• Quite often different

temperatures

$\Gamma_{em} = \Lambda_{g \to d} + \Gamma_{CMB} + \Gamma_{abs}$

- the grain size $(\Gamma \propto \pi a^2)$
- dust and gas temperature

• gas velocity
$$v_g = \sqrt{\frac{8k_b T_g}{\pi m_H}}$$

$$\Gamma_{em} = \Lambda_{g \to d} + \Gamma_{CMB} + \Gamma_{abs}$$

$$\begin{split} &\Lambda_{g \to d}(a, T_d) = 2\pi a^2 n_g n_d v_g k_b (T_g - T_d) \alpha \\ &\Gamma_g > T_d \to \text{cooling} \\ &\Gamma_{g \to d}(a, T_d) = 2\pi a^2 n_g n_d v_g k_b (T_d - T_g) \alpha \end{split} \quad \begin{aligned} &T_d > T_d \to \text{cooling} \\ &T_d > T_g \to \text{heating} \end{aligned}$$

Chemical cooling

 $A + B \leftrightarrow C + D + \Delta E$

Chemical cooling

needs energy from the medium, $\Lambda \propto nk(T)\Delta H$

Collisional dissociation: H₂ + H → H + H + H
 ∆H = 4.48 eV

Cooling summary

lonized regions

- H excitation requires 10.2 eV ($\sim 10^5$ K)
- ▶ recombination cooling (e⁻ + proton)
- $T < 10^4$ K electronic transitions of metals (O⁺⁺, N⁺)
- main collision partner: electrons

Atomic neutral regions

- ► metals with electronic energies below 1000 K
- \blacktriangleright C⁺ or [CII], 158 $\mu {\rm m}$

Molecular clouds

- ► CO, H₂O
- dust grains

Exercise (from Krome School)

The typical hydrogen number density in the diffuse ISM is $n_H=1$ cm⁻³, the radiation field is G₀=1, and the density of C⁺ is $n(C^+)=5 \ 10^{-4} \text{ cm}^{-3}$, $n(e^-)=10^{-2} \text{ cm}^{-3}$.

Assume that photoelectric heating is the main heating process and fine structure emission by the [CII] 158 μ m is the dominant cooling process.

Derive an estimate for the gas temperature using the two-level approximation for [CII].

Photoelectric heating rate per hydrogen atom $\Gamma_{PE} / n_H = 1.4 \cdot 10^{-26} G_0 erg / s$

I. Kamp lecture